Пошаговое объяснение:
Р₁{1-й стрел. попал}=0,8 P₁'{1-й стрел. не попал}=1-0,8=0,2
P₂{2-й стрел. попал}-0,7 P₂'{2-й стрел. не попал}=1-0,7=0,3
P₃{3-й стрел. попал}=0,6 P₃'{3-й стрел. не попал}=1-0,6=0,4
1) 0 попаданий ( все три стрелка промахнулись, т.е. 1-й не попал и 2-й не попал и 3-й не попал)
вероятность=P₁'·P₂'·P₃'=0,2·0,3·0,4=0,024
2)1 попадание (1-й попал, а 2-й и 3-й нет или 2-й попал, а 1-й и 3-й нет или 3-й попал, а 1-й и 2-й нет)
вероятность=P₁·P₂'·P₃'+P₁'·P₂·P₃'+P₁'·P₂'·P₃=0,8·0,3·0,4+0,2·0,7·0,4+0,2·0,3·0,6=0,096+0,056+0,036=0,188
3)2 попадания (1-й и 2-й попали а 3-й нет или 1-й и 3-й попали а 2-й нет или 2-й и 3-й попали а 1-й нет)
вероятность=P₁·P₂·P₃'+P₁·P₂'·P₃+P₁'·P₂·P₃=0,8·0,7·0,4+0,8·0,3·0,6+0,2·0,7·0,6=0,224+0,144+0,084=0,452
4)3 попадания (все трое попали 1-й попал и 2-й попал и 3-й попал)
вероятность=P₁·P₂·P₃=0,8·0,7·0,6=0,336
число попаданий 0 1 2 3
вероятность 0,024 0,188 0,452 0,336
В решении.
Пошаговое объяснение:
3. Переведите периодическую десятичную дробь в обыкновенную
А) 0,(17);
Чтобы обратить чистую периодическую дробь в обыкновенную, нужно ее период сделать числителем, а в знаменателе записать цифру 9 столько раз, сколько цифр в периоде.
0,(17) = 17/99;
В) 1,1(4);
Чтобы обратить смешанную периодическую дробь в обыкновенную, нужно из числа, стоящего после запятой до второго периода, вычесть число, стоящее после запятой до первого периода, и эту разность сделать числителем, а в знаменатель записать цифру 9 столько раз, сколько цифр в периоде, со столькими нулями справа, сколько цифр между запятой и первым периодом.
1,1(4) = 1 ((14 - 1)/90) = 1 13/90.
46-у=26
у=46-26
у=20-корень уравнения
х+13=45-12
х+13=33
х=33-13
х=20-корень уравнения
70-z=100-30
70-z=70
z=70-70
z=0-корень уравнения