Пошаговое объяснение:
1)y=2x⁻³2)y=3√x 3)y=cos x 4) y=3cos x 5)y=2sinx 6) y=3/x 7)y=3/4ˣ
8) y=3/4 x
1 ) y = 2x⁻³ ; y' = 2* (- 3 )* x⁻⁴ = - 6x⁻⁴ ;
2) y = 3√x ; y' = 3 * 1/2 *x^(- 1/2) = 1,5x^(- 1/2 ) = 1,5/√x ;
3) y = cosx ; y' = - sinx ;
4) y = 3cosx ; y' = ( 3cosx )' = - 3sinx ;
5) y = 2sinx ; y' = ( 2sinx )' = 2cosx ;
6) y = 3/x ; y' = ( 3/x )' = ( 3x⁻¹ )' = - 3/x² ;
7)y = 3/4ˣ ; y' = ( 3/4ˣ )' = ( 3* 4⁻ˣ )' = 3 * (- 1 ) * 4⁻ˣ *ln4 = - 3* 4⁻ˣ *ln4 .
8) y = 3/4 x ; y' = ( 3/4 x )' = 3/4 * 1 = 3/4 .
ответ:
общие корни уравнений будут и корнями разности этих уравнений
x3–5x2+7x–a – (x3–8x+b)=0;
–5x2 +15x – a – b = 0.
умножаем это уравнение на х:
–5x3+15x2–ax–bx=0
умножаем второе на 5
5x3–40x+5b=0
складываем:
15x2–40x–ax–bx+5b=0
умножаем
–5x2 +15x – a – b = 0.
на 3
–15x2 +45x – 3a – 3b = 0.
и
15x2–40x–ax–bx+5b=0
складываем
5х–ax–bx–3a+2b=0
(5–a–b)x=3a–2b получили линейное уравнение.
оно имеет решения при
5–a–b=0
3a–2b=0
a=5–b
3·(5–b)–2b=0 b=3
a=2
значит при а=2 и b=3 уравнение
–5x2 +15x – a – b = 0
имеет два корня.
а потому и данные уравнения имеют два общих корня ( третьи отличаются друг от друга)
о т в е т. при а=2; b=3 фухх написал надеюсь что правильно
пошаговое объяснение:
Тождество — это равенство верное при любых допустимых значениях входящих в его состав переменных.
Вы уже познакомились со множеством тождеств, например, формулы сокращенного умножения:
a 2−b 2 = (a−b)(a+b) ;
a 2−2ab+b 2 = (a−b) 2 ;
a 2+2ab+b 2 = (a+b) 2 и др.
Всякую замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения.
Для тождественных преобразований можно использовать формулы
сокращенного умножения, законы арифметики и др. тождества. Например,
вынесение общего множителя за скобку и формулу разность квадратов, как в примере ниже:
x 3−xy 2 = x(x 2−y 2) = x(x−y)(x+y) .
Приведенные выше алгебраические выражения тождественно равны
друг другу и обращаются в верное числовое равенство при любых
значениях переменных x и y .
Выполним тождественные преобразования и сократим
алгебраическую дробь x 3−xx 2−x .
x 3−xx 2−x = x(x 2−1)x(x−1) = x(x−1)(x+1)x(x−1) = (x+1) ;
x 3−xx 2−x = (x+1) .
Мы получили тождество, при х ≠ 0 и х ≠ 1 (недопустимые значения) ,
так как знаменатель левой части не должен быть равен нулю.
x 2−x≠0 ; x(x−1)≠0 ; х≠0 и х≠1 .
Чтобы доказать тождество надо выполнить тождественные
преобразования одной или обеих частей равенства, и получить слева
и справа одинаковые записи алгебраических выражений.
Например, докажем тождество:
x 3−xx 2−x = x 2+xx
x(x 2−1)x(x−1) = x(x+1)x — вынесли х за скобки ;
x 2−1 2x−1 = x+1 — сократили на х ;
(x−1)(x+1)x−1 = x+1 — разность квадратов ;
x+1 = x+1 — сократили на x−1 .
Данное равенство является тождеством, при х≠0 и х≠1.
Чтобы доказать, что равенство не является тождеством,
достаточно найти одно допустимое значение переменной, при которой
получившиеся числовые выражения будут не равны друг другу.
Например:
x 2−xx = x 2+xx — х≠0 ;
x−1 = x+1 — сократим на х для удобства ;
5−1 ≠ 5+1 — подставим, например 5 .
Данное равенство не является тождеством.