1)Школьные Знания.com
Какой у тебя вопрос?
1
10 - 11 классы Геометрия
В основании прямого параллелепипеда ABCDA1B1C1D1 лежит ромб ABCD со стороной,равной а,и углом BAD,равным 60 градусов. Плоскость BC1D составляет с плоскостью основания угол в 60 градусов. Найдите площадь полной поверхности параллелепипеда.
Попроси больше объяснений Следить Отметить нарушение Vikbalob1 22.05.2012
ответ
Проверено экспертом
ответ дан
Hrisula
Hrisula
В основании прямого параллелепипеда ABCDA1B1C1D1лежит ромб ABCD со стороной,равной а,и углом BAD,равным 60 градусов. Плоскость BC1D составляет с плоскостью основания угол в 60 градусов. Найдите площадь полной поверхности параллелепипеда.
Так как острый угол ромба равен 60°, его меньшая диагональ делит основание на 2 равносторонних треугольника.⇒
ВD=а
ВС1D- равобедренный треугольник, его высота СН перпендикулярна ВD и составляет с СН угол 60°
СН - высота правильного треугольника ВСD
СН=а*sin(60°)=(а√3):2
С1Н=CH:(sin30°)=2СН=а√3
Высота СС1 параллелепипеда равна
СС1 =С1Н*sin (60°)=(а√3*√3):2=3а/2
Sбок=Р*Н=4а*3а/2=6а²
Два основания состоят из 4-х правильных треугольников.
2*S осн=4*S BDC=4*(a²√3):4=a²√3
S полн=6а²+a²√3=а²(6+√3)
--
[email protected]
Добро Получи неограниченный доступ к миллионам подробных ответов
ПОПРОБУЙ СЕГОДНЯ
2) го
Двухгранный угол между плоскостями равен линейному углу АОВ = 1200.
Из точки М проведем перпендикуляры к ОА и ОВ, а так же соединим точку М и О.
Треугольники АОМ и ВОМ прямоугольные, у которых гипотенуза ОМ общая, а катеты АМ и ВМ, во условию равны, тогда прямоугольные треугольники АОМ и ВОМ равны по катету и гипотенузе, четвертому признаку равенства прямоугольных треугольником.
Тогда углы АОМ и ВОМ равны, а ОМ биссектриса угла АОВ, тогда угол АОВ = ВОМ = 600.
В прямоугольном треугольнике ВОМ Sin60 = ВМ / ОМ.
ОМ = BM / Sin60 = m / (√3 / 2) = 2 * m /√3 = 2 * m * √3 / 3 см.
ответ: От точки М до ребра двухгранного угла 2 * m * √3 / 3 см.
10*х=200
х=200/10
х=20
10*20=8*25
200=200