Пошаговое объяснение:
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = -3·x2-6·x
или
f'(x)=-3·x·(x+2)
Находим нули функции. Для этого приравниваем производную к нулю
x·(x+2) = 0
Откуда:
x1 = 0
x2 = -2
(-∞ ;-2) (-2; 0) (0; +∞)
f'(x) < 0 f'(x) > 0 f'(x) < 0
функция убывает функция возрастает функция убывает
В окрестности точки x = -2 производная функции меняет знак с (-) на (+). Следовательно, точка x = -2 - точка минимума. В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума.
ответ:
пошаговое объяснение: сказка о дробях № 1
жили два брата. одного звали числитель, а другого знаменатель. дружба у них была крепкая. когда они были вместе, их все звали дробью. жить один без другого они не могли. однажды пошли они в лес. в лесу были две дорожки. одна вела направо, а другая налево. и разошлись братья по разным тропинкам, но договорились встретиться у ручья. по дороге числитель встретил старика, которого звали деление. они разговорились:
- дай мне воды, внучок, я тебя . а за это я тебе путь покажу легче.
дал числитель воды делению. а старик так и сделал. он разделил числитель. то же самое произошло и со знаменателем. вскоре они встретились у ручья и соединились. старик не обманул, он показал правило сокращения дроби и жить братьям стало интереснее и легче.
сказка о дробях № 2
жила-была королева дробей единица. и жили в ее стране разные дроби. единица решила, что каждая дробь, у которой числитель меньше знаменателя будет называться правильной дробью, а у которой числитель больше или равен знаменателю – неправильной. и еще увидела она, что есть дроби, у которых числитель и знаменатель можно разделить на одно и то же число. и назвала анна это действие сокращением дробей. так и правит королева дробей своей страной.