Основные функции
\left(a=\operatorname{const} \right)
x^{a}: x^a
модуль x: abs(x)
\sqrt{x}: Sqrt[x]
\sqrt[n]{x}: x^(1/n)
a^{x}: a^x
\log_{a}x: Log[a, x]
\ln x: Log[x]
\cos x: cos[x] или Cos[x]
\sin x: sin[x] или Sin[x]
\operatorname{tg}x: tan[x] или Tan[x]
\operatorname{ctg}x: cot[x] или Cot[x]
\sec x: sec[x] или Sec[x]
\operatorname{cosec} x: csc[x] или Csc[x]
\arccos x: ArcCos[x]
\arcsin x: ArcSin[x]
\operatorname{arctg} x: ArcTan[x]
\operatorname{arcctg} x: ArcCot[x]
\operatorname{arcsec} x: ArcSec[x]
\operatorname{arccosec} x: ArcCsc[x]
\operatorname{ch} x: cosh[x] или Cosh[x]
\operatorname{sh} x: sinh[x] или Sinh[x]
\operatorname{th} x: tanh[x] или Tanh[x]
\operatorname{cth} x: coth[x] или Coth[x]
\operatorname{sech} x: sech[x] или Sech[x]
\operatorname{cosech} x: csch[x] или Csch[е]
\operatorname{areach} x: ArcCosh[x]
\operatorname{areash} x: ArcSinh[x]
\operatorname{areath} x: ArcTanh[x]
\operatorname{areacth} x: ArcCoth[x]
\operatorname{areasech} x: ArcSech[x]
\operatorname{areacosech} x: ArcCsch[x]
[19.67] =19: integral part of (19.67) - выделяет целую часть числа (integerPart)
Построение графиков функций
Сервис поддерживает возможность построения графиков функций как вида f(x), так и вида f(x,y). Для того, чтобы построить график функции f(x) на отрезке x \in \left[ {a,b} \right] нужно написать в строке: f[x],{x, a, b}. Если Вы хотите, чтобы диапазон изменения ординаты y был конкретным, например y \in \left[ {c,d} \right], нужно ввести: f[x],{x, a, b},{y, c, d}.
Примеры
x^2+x+2, {x,-1,1};
x^2+x+2, {x,-1,1},{y,-1,5};
Sin[x]^x, {x,-Pi,E};
Sin[x]^x, {x,-Pi,E},{y,0,1}.
Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:f[x]&&g[x]&&h[x]&&…&&t[x],{x, a, b}.
Примеры
x&&x^2&&x^3, {x,-1,1},{y,-1,1};
Sin[x]&&Sin[5x]&&Sin[10x]&&Sin[15x], {x,-5,5}.
Для того, чтобы построить график функции f(x,y) на прямоугольнике x \in \left[ {a,b} \right],y \in \left[ {c,d} \right], нужно написать в строке: f[x, y],{x, a, b},{y, c, d}. К сожалению, диапазон изменения аппликаты z пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции f(x,y) Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).
Примеры
Sin[x^2+y^2],{x,-1,-0.5},{y,-2,2};
xy,{x,-4,4},{y,-4,4}.
y=((100+x)*x)/100
В данной системе уравнений показано, что х - число процентов на которое подорожали акции в среду, а y - число процентов, на которое акции подешевели. Говорится, что подешевели и подорожали на одинаковое число процентов, но x и y - два разных числа. Сейчас объясню на примере.
"Подорожал на 1 процент, а потом подешевел на 1 процент товар. Изначально он стоил 100%, потом подорожал на 1%, стал равным 101%. Потом подешевел на 1%, то есть мы убираем 1% от 101%, значит это будет 101 - 1,01 = 99,9%. Как видите 1 и 1,01 - это два разных числа, как в данном примере x и y." Вернемся к примеру.
Подставляя второе уравнение в первое, получим:
100-9=(100+x)-((100+x)*x)/100
Отсюда находим x:
х=30%
То есть, изначально поднялась цена на 30% = 130%
Потом упала на 30%, то есть 30% от 130% = 39. 130-39=91. Как видно акции стали на 9% дешевле.
2) 7x=1.05y
y=6.66666666x
x=y/6.66666666=0.15y
6x=0.9y
Следовательно, на 10%