13 монет
Пошаговое объяснение:
Пусть х - количество монет, которые были у Буратино.
Тогда можно составить уравнение:
х +18-12=19,
где 18 - это количество монет, которые ему подарил Папа Карло,
12 - количество монет, которые были истрачены на покупку книги,
19 - столько монет у Буратино осталось.
Так как 18-12 = 6, то первоначальное уравнение запишем в виде:
х + 6 = 19.
Неизвестное слагаемое (х) равно сумме (19) минус известное слагаемое (6):
х = 19 - 6 = 13.
Значит, у Буратино было 13 монет.
ПРОВЕРКА:
13 (столько монет у него было) + 18 (столько монет подарил ему Папа Карло) - 12 (столько монет Буратино истратил на покупку книги) = 19 монет, что соответствует условию задачи.
Значит, уравнение составлено верно, и задача решена правильно.
ответ: у Буратино было 13 монет.
1) Р (А) = 0,99³=0.970299
2) так как n=450 достаточно велико (условие npq=450*0.55*0.45=111.375≥20 выполнено) , то применяем формулу Муавра - Лапласа:
x= (375-450*0.55)/√(450*0.55*0.45)=127.5/10.553=12,08
Р (375;450)=f(12.08)/√(450*0.55*0.45)=0.0000015/10.553= 0,000000142, что практически не возможно.
3) Воспользуемся интегральной теоремой Муавра-Лапласа:
x1=(345-400*0.9)/√(400*0.9*0.1)=(-15)/6=-2.5
x2=(372-400*0.9)/√(400*0.9*0.1)=12/6=2
P400(345≤x≤372)≈1/2[Ф (2)-Ф (-2,5)]=1/2[Ф (2)+Ф (2,5)]=1/2(0.9545+0.9876)=0.97105
Пошаговое объяснение:
При х<0 у=-х/х=-1
Строишь график у=-1, когда х<0
При х>0 у=x/x=1
Строишь график у=1 ,когда х>0
При х=0 , у=0