Куб натурального числа n можно представить в виде n слагаемых, образующих арифметическую прогрессию с разностью 2.
Доказательство:
Если n — число нечётное:
Пусть средний член равен n². Тогда сумма членов этой прогрессии равна n² + n² - 2 + n² + 2 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Если n — число чётное:
Пусть средние члены (по счёту n/2 и n/2 + 1) равны n²-1 и n²+1. Сумма членов прогрессии равна: n² - 1 + n² + 1 + n² - 3 + n² + 3 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Во всех возможных случаях мы смогли представить куб натурального числа в виде n слагаемых, что и требовалось доказать.
1 см = 10 мм
1 мм = 0,1 см
1) 12 см 2 мм + 7 мм = (12*10 + 2) + 7 = (120 + 2) + 7 = 122 + 7 = 129 мм
129 мм = 129:10 = 12,9 см
ответ: 12,9 см
2) 87 см 6 мм + 25 см 4 мм = (87*10 + 6) + (25*10 + 4) = (870 + 6) + (250 + 4) = 876 + 254 = 1130 мм
1130 мм = 1130:10 = 113 см
ответ: 113 см
3) 50 см 4 мм - 49 см = (50*10 + 4) - 49*10 = (500 + 4) - 490 = 504 - 490 = 14 мм
14 мм = 14:10 = 1,4 см
ответ: 1,4 см
4) 80 см - 39 см 5 мм = 80*10 - (39*10 + 5) = 800 - (390 + 5) = 800 - 395 = 405 мм
405 мм = 405:10 = 40,5 см
ответ: 40,5 см
Р = 1+1+1+1 = 4 см або 40 мм