Одним з відомих нам прикладів такого розкладання є розподільна властивість множення a(b + с) = ab + ас, якщо її записати у зворотному порядку: аb + ас – a(b + с). Це означає, що многочлен аb + ас розклали на два множники а і b + с.
Під час розкладання на множники многочленів із цілими коефіцієнтами множник, який виносять за дужки, обирають так, щоб члени многочлена, який залишиться в дужках, не мали спільного буквеного множника, а модулі їх коефіцієнтів не мали спільних дільників.
Розглянемо кілька прикладів.
Приклад 1. Розкласти вираз на множники:
1) 8m + 4;
2) at + 7ар;
3) 15а3b – 10а2b2.
Р о з в’ я з а н н я.
1)
Спільним множником є число 4, тому
8m + 4 = 4 . 2m + 4 ∙ 1 = 4(2m + 1).
2) Спільним множником є змінна а, тому
At + 7ap = a(t + 7p).
3) У даному випадку спільним числовим множником є найбільший спільний дільник чисел 10 і 15 – число 5, а спільним буквеним множником є одночлен а2b. Отже,
15а3b – 10а2b2 = 5а2b ∙ 3а – 5a2b ∙ b = 5а2b(3а – 2b).
Приклад 2. Розкласти па множники:
1) 2m(b – с) + 3р(b – с);
2) х(у – t) + c(t – у).
Р о з в ‘ я з а н н я.
1) У даному випадку спільним множником є двочлен b = c.
Отже, 2m(B – С) + 3р(B – C) = (b – с)(2m + 3р).
2) Доданки мають множники у – t і t – у, які є протилежними виразами. Тому в другому доданку винесемо за дужки множник -1, одержимо: c(t – у) = – с(у – t).
Отже, х(у – t) + c(t – у) = х(у – t) – с(у – t) = (у – t) (х – с).
ответ: б) 1 1/4 часа- это 5/4 часа
92×5/4=(92×5)÷4=460÷4=115 км прилетит голубь за 1 1/4 часа
в) 1/3+1/4=(4+3)/12=7/12 - частей денег израсходовал покупатель в двух магазинах.
2550×7/12= 17850÷12= 1487,5 рублей израходовал покупатель в двух магазинах.
2550-1487,5= 1062,5 рублей осталось у покупателя.
1487,5-1062,5= 425 рублей - на столько у него осталось рублей меньше, чем он израсходовано.
г) 2 млрд.т =2 000 000 000т ×0,30= 600 000 000т или 600 млн.т фосфора
д) 12×5=60 т травы собирают с 12га
При сушке теряют 80% в весе, остается 20% сена
60×0,20=12 т сена получится с луга 12га
Пошаговое объяснение: