М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hiohio
hiohio
07.06.2020 06:54 •  Математика

Блиц турнир а) из п пионов сделали букеты по 3 белых и к красных пиона в каждом. сколько вышло букетов?

👇
Ответ:
Aleks367783
Aleks367783
07.06.2020
Смотря сколько пионов вообще
4,5(50 оценок)
Открыть все ответы
Ответ:
polinaabramova10
polinaabramova10
07.06.2020

Стародавні греки встановили надзвичайно цікавий факт, що існує всього п’ять правильних опуклих многогранників різної форми (тетраедр, гексаедр, октаедр, додекаедр, ікосаедр).

Правильні многогранники, крім куба, мали невелике поширення в практиці. Вони рідко зустрічаються в архітектурі, у живопису, проте іноді вони стають у пригоді.

Наведемо приклад. Легко впевнитись, що вершини кожного з п’яти видів правильних многогранників, в тому числі й ікосаедра, лежать на кульовій поверхні. Дванадцять вершин ікосаедра – це максимальне число точок, які можна нанести на поверхню кулі так, щоб відстань між будь-якими двома сусідніми точками була однакова.

Цю властивість ікосаедра застосувала одна з американських фірм для виготовлення баскетбольних м’ячів. На поверхні сферичної основи встановили 12 точок, рівномірно розділених по каркасу (вершини ікосаедра). Машина намотує нейлонові нитки по колам великих кругів, які проходять через кожну пару зазначених точок. Коли таке намотування буде повторено багато разів, причому, починаючи щоразу з різних пар точок, камера буде покрита цілком рівномірно, що забезпечить однакову міцність кожного її квадратного сантиметра.

4,8(37 оценок)
Ответ:
ЯестьПаша
ЯестьПаша
07.06.2020

ответ: Максимум - (4;29), Минимум - (0;-3)

Пошаговое объяснение:

(Как я понимаю, ночью ставки выше)

Возьмем производную данной функции, чтобы затем найти экстремум:

f'(x) = (-x^3)' + (6x^2)' +(-3)' = -3x^2 + 12x + 0 = -3x^2 + 12x

f'(x) = -3x^2 + 12x

Известно, что производная принимает нулевое значение в точке экстремума ⇒ приравняв производную к нулю мы сможем его найти.

f'(x) = 0\\-3x^2 +12x = 0\\-3x(x-4) = 0\\x = 0; 4

Рассмотрим знак производной до x = 0. При x = -1 производная отрицательна ⇒ функция убывает и при x = 0 минимум (можем так говорить, так как функция обычный куб). Затем производная становиться положительной и функция возрастает, пока x не становиться равен 4. Здесь достигается максимум. Потом производная становиться вновь отрицательной.

Значит:

При x = 0 - min

При x = 4 - max

Подставим числа:

(0;-3) - min\\(4; 29) - max

4,7(3 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ