М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Тьома11
Тьома11
21.02.2023 04:26 •  Математика

Назовите смешанное число которое больше своей целой части 3/11 и больше соей дробной части на 7

👇
Ответ:
Понятно. что целая часть составит 7. а дробная 3/11
7+3/11=7 3/11
или так: пусть целая часть будет х, дробная у. Число будет х+у
по условию
х+у-х=3/11 - вычтем из числа целую часть
у=3/11 - получим дробную часть
х+у-у=7 - вычтем из числа дробную часть
х=7 - получим целую часть
х+у=7+3/11=7 3/11
 
4,7(93 оценок)
Открыть все ответы
Ответ:
galaxykill
galaxykill
21.02.2023
Для удобства поделим левую и правую части дифференциального уравнения на x:
   y'+ \frac{y}{x} =x^2
Классификация: Дифференциальное уравнение первого порядка, разрешенной относительно производной, линейное неоднородное.

Данное дифференциальное уравнение можно решить двумя Первое это метод Бернулли, а второе - метод Лагранжа. Приведу эти вместе. 

Метод Бернулли.

Введём замену переменных y=uv, тогда по правилу дифференцирования двух функций: y'=u'v+uv'. Получим:

u'v+uv'+ \frac{uv}{x}=x^2
u'v+u(v'+\frac{v}{x})=x^2

Это решение состоит из двух этапов: 1) это принять второе слагаемое равным 0; 
v'+\frac{v}{x}=0 - дифференциальное уравнение с разделяющимися переменными.
\dfrac{dv}{v} \displaystyle=- \frac{dx}{x} ;~~~~\Rightarrow~~~~ \int \frac{dv}{v}=-\int \frac{dx}{x} ;~~~~\Rightarrow~~~~ \ln|v|=-\ln|x|
     откуда получаем v= \frac{1}{x}

Поскольку второе слагаемое равняется нулю, то подставив найденную функцию v(x) в уравнение, получим

u'\cdot \frac{1}{x} =x^2\\ \\ u'=x^3\\ \\ u=\displaystyle \int x^3dx= \frac{x^4}{4} +C

Тогда, осуществив обратную замену, общее решение данного ДУ:

      y=\bigg(\displaystyle \frac{x^4}{4} +C\bigg)\cdot \frac{1}{x} =\frac{x^3}{4} + \frac{C}{x}

Метод Лагранжа.
Найдем сначала общее решение соответствующего однородного уравнения:
  y'+ \frac{y}{x} =0 - уравнение с разделяющимися переменными.

Разделяя переменные и проинтегрировав, получим общее решение однородного уравнения:
\displaystyle \int \frac{dy}{y} =-\int \frac{dx}{x} ;~~~~~\Rightarrow~~~~~ y= \frac{C}{x}

Примем константу за функцию, т.е. C=C(x) и имеем y= \dfrac{C(x)}{x}
Тогда дифференцируя по правилу частности двух функций, получим
 y'=\dfrac{xC'(x)-C(x)}{x^2}

И тогда, подставив эти данные в исходное уравнение, получаем

\dfrac{xC'(x)-C(x)}{x^2} + \dfrac{C(x)}{x^2} =x^2\\ \\ \\ C'(x)=x^3;~~~~\Rightarrow~~~~ C(x)=\displaystyle \int x^3dx= \frac{x^4}{4}+C_1

И, вернувшись к обратной замене, получаем общее решение линейного неоднородного уравнения:
       y=\displaystyle \frac{\frac{x^4}{4}+C_1 }{x} = \frac{x^3}{4}+ \frac{C_1}{x}
4,7(37 оценок)
Ответ:
AnnaGlyuza0436
AnnaGlyuza0436
21.02.2023
Сначала найдём производную:
y*=(x^2(1-x)^2)*=(x^2)*(1-x)^2+x^2((1-x)^2)*=2x(1-x)^2+x^2*2(1-x)*(1-x)*=2x(1-2x+x^2)+x^2(2-2x)*(-1)=2x-4x^2+2x^3-2x^2+2x^3=4x^3-6x^2+2x
Теперь то, что получилось (жирный шрифт) приравниваем к нулю и решаем:
4x^3-6x^2+2x=0
x(4x^2-6x+2)=0
x=0; 4x^2-6x+2=0
         2x^2-3x+1=0
         D=(-3)^2-4*2*1=1
         x1=1
         x2=0.5
Дальше строим ось X и отмечаем точки в порядке возрастания.
Надеюсь вам знаком метод интервалов.
в результате получается, что Xмин = 0 и 1, а Xмах=0,5
Теперь подставляем в исходное уравнение (y=x^2(1-x)^2)
Yнаим=Y(0)=0^2(1-0)^2=0
Yнаиб=Y(0.5)=0.5^2(1-0.5)^2=0.25*0.25=0.0625
ответ: Yнаим=0; Yнаиб=0,0625
4,6(65 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ