М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mikhailstrelni
mikhailstrelni
20.12.2021 20:24 •  Математика

Выразить в сантиметрах 2 дм 6 см,1дм 1см,5дм,1м,7дм 3см

👇
Ответ:
DashaZhur1752
DashaZhur1752
20.12.2021
2дм-20 см+6 см = 26 см, 1дм=10см+1см=11см,5дм=50см,1м=100см,7дм=70 см+ 3 см= 73 см
4,6(95 оценок)
Ответ:
illay0409
illay0409
20.12.2021
1. 26см
2. 11см
3. 50см
4. 100см
5. 73см
4,5(32 оценок)
Открыть все ответы
Ответ:
Chara05
Chara05
20.12.2021

ответ:Область определения функции - это все значения, которые может принимать переменная х.

В уравнении у = √(х^2 - 4х + 3) под знаком корня может быть только положительное число и 0, т.к. нельзя извлечь квадратный корень из отрицательного числа.

x^2 - 4x + 3 ≥ 0 – решим методом интервалов;

найдем нули функции:

x^2 – 4x + 3 = 0;

D = b^2 – 4ac;

D = (- 4)^2 – 4 * 1 * 3 = 16 – 12 = 4; √D = 2;

x = (- b ± √D)/(2a);

x1 = (4 + 2)/2 = 6/2 = 3;

x2 = (4 – 2)/2 = 2/2 = 1.

Отметим на числовой прямой точки 1 и 3, они поделят прямую на три интервала: 1) (- ∞; 1], 2) [1; 3], 3) [3; + ∞). Найдем значение выражения x^2 – 4x + 3 в каждом интервале. В ответ выпишем те интервалы, в которых оно положительно.

Пошаговое объяснение:

4,4(54 оценок)
Ответ:
konovalovilya
konovalovilya
20.12.2021
Первое решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 = √6/2. Для площади S этого треугольника имеют место равенства . Откуда находим AH = √3/3

Второе решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Треугольники AOA1 иHOA подобны по трем углам. Следовательно, AA1:OA1 = AH:AO. Откуда находим AH = √3/3.

Третье решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Откуда sin угла AOA1=√6/3
и, следовательно, AH=AO* sin угла AOH=√3/3
4,4(3 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ