М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alice111111111111111
Alice111111111111111
20.12.2021 20:24 •  Математика

Вычисли значения выражений и сравни их 320*7+8004*90 и 80118: 9*80 только ето

👇
Ответ:
анна2259
анна2259
20.12.2021
320 * 7 +8004*90 = 2240+720360=722600
80118:9*80=8902*80=712160
722600 > 712160      (> больше)
4,6(82 оценок)
Ответ:
Elizaveta544435
Elizaveta544435
20.12.2021
320*7=2240 8004*90=720360 720360+2240=722600 80118:9=8902 8902*80=712260 722600-712260=9840
4,4(97 оценок)
Открыть все ответы
Ответ:
makrona123
makrona123
20.12.2021
1)  Находим первую производную функции:
y' = -3x²+12x+36
Приравниваем ее к нулю:
-3x²+12x+36 = 0
x₁ = -2
x₂ = 6
Вычисляем значения функции на концах отрезка
f(-2) = -33
f(6) = 223
f(-3) = -20
f(3) = 142
ответ:   fmin = -33, fmax = 142
2)  
a) 1. Находим интервалы возрастания и убывания. 
Первая производная равна
f'(x) = - 6x+12
Находим нули функции. Для этого приравниваем производную к нулю
- 6x+12 = 0
Откуда:
x₁ = 2
(-∞ ;2)   f'(x) > 0   функция возрастает
(2; +∞)    f'(x) < 0функция убывает
В окрестности точки x = 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = 2 - точка максимума.
б)  1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = -12x2+12x
или
f'(x) = 12x(-x+1)
Находим нули функции. Для этого приравниваем производную к нулю
12x(-x+1) = 0
Откуда:
x1 = 0
x2 = 1
(-∞ ;0)   f'(x) < 0  функция убывает 
(0; 1)   f'(x) > 0   функция возрастает
 (1; +∞)   f'(x) < 0   функция убывает
В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума. В окрестности точки x = 1 производная функции меняет знак с (+) на (-). Следовательно, точка x = 1 - точка максимума.

3. Исследуйте функцию с производной f(x)=2x^2-3x-1
1.  D(y) = R
2.  Чётность и не чётность:
f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. Значит она ни чётная ни нечётная
3.  Найдём наименьшее и наибольшее значение функции
Находим первую производную функции:
y' = 4x-3
Приравниваем ее к нулю:
4x-3 = 0
x₁ = 3/4
Вычисляем значения функции 
f(3/4) = -17/8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 4
Вычисляем:
y''(3/4) = 4>0 - значит точка x = 3/4 точка минимума функции.
4.  Найдём промежутки возрастания и убывания функции:
1. Находим интервалы возрастания и убывания. 
Первая производная равна
f'(x) = 4x-3
Находим нули функции. Для этого приравниваем производную к нулю
4x-3 = 0
Откуда:
x₁ = 3/4
(-∞ ;3/4)   f'(x) < 0 функция убывает
 (3/4; +∞)   f'(x) > 0   функция возрастает
В окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3/4 - точка минимума
4,7(20 оценок)
Ответ:
Dimasik333000
Dimasik333000
20.12.2021
Дано:

Квадрат ABCD;   E - середина AD, F - середина AB, G - середина BC, H - середина CD (рисунок в приложении).

Найти:

Площадь четырехугольника EFGH.

Решение:

Вариант 1.

Проведем диагонали EG и FH четырехугольника EFGH (пусть они пересекаются в точке O). Так как они соединяют середины противоположных сторон квадрата, они делят его на 4 других равных квадрата: AFOE, BFOG, CHOG и DHOE. В каждом из них проведена диагональ. А диагональ делит сам квадрат на две равные по площади части (и не только по площади). Так как площадь четырехугольника EFGH (на самом деле это тоже квадрат) занимает половину площади каждого из квадратов AFOE, BFOG, CHOG и DHOE, то она равна половине ABCD, то есть:

S(EFGH) = 4 · 4 : 2 = 8 (см²)

Вариант 2.

Можно воспользоваться тем, что площадь параллелограмма Вариньона (параллелограмма, соединяющего середины сторон произвольного четырехугольника) всегда равна половине площади исходного четырехугольника. Значит:

S (EFGH) = S (ABCD) / 2 = 4² / 2 = 16 / 2 = 8 (см²)

ответ:

\Large{\boxed{S(EFGH) = 8 \; \emph{cm} ^2}}


Подскажите ! сторона квадрата abcd равна 4 см. найдите площадь четырёхугольника, вершины которого яв
4,8(36 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ