М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lilav
lilav
20.01.2021 04:32 •  Математика

Найдите сумму длин всех рёбер прямоугольного параллелепипеда , если его ширина равна 13целых 2две 9девятых см , высота на 4целых 4четыре 9девятых см меньше ширины , а длина на 10целых 7семь 9девятых см больше высоты. подскажите

👇
Ответ:
vinokurovbob
vinokurovbob
20.01.2021
1) 13 2/9-4 4/9=12 11/9-4 4/9=8 7/9(см)-высота
2) 8 7/9+10 7/9=18 14/9=19 5/9(см) -длина
3) 13 2/9+8 7/9+19 5/9=40 14/9=41 5/9(см)- сумма трех измерений
4) 41 5/9*4=164+20/9=164+2 2/9=166 2/9(см)-сумма длин всех рёбер прямоугольного параллелепипеда
4,5(3 оценок)
Открыть все ответы
Ответ:
90125
90125
20.01.2021
Пусть многочлен

P(x) = anxn + an–1xn–1 + ... + a0

имеет хотя бы один действительный корень и

a0 ≠ 0.

Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

Решение:

Приведем схему вычеркивания одночленов, дающую на каждом шаге многочлены, имеющие корни.

Пусть многочлен

P(x) = axn + bxm + ... + c

(a, b, c ≠ 0) содержит не менее трёх членов (xn и xm

две старших степени переменной x в P).

Если n или m нечётно, вычеркивая в P(x) одночлен bxm или axn соответственно, получим многочлен нечётной степени, имеющий хотя бы один корень.

Вычеркивая в дальнейшем другие одночлены, мы получим искомую оследовательность многочленов. Поэтому далее рассматриваем случай, когда n и m чётны.

Умножая при необходимости на –1, можем считать, что a > 0. Если c < 0, то в P(x) можно вычеркнуть любой одночлен, отличный от старшего и свободного члена, полученный многочлен P1(x) принимает отрицательное значение c при x = 0 и положительное при достаточно большом x, значит, имеет корень. Далее считаем, что c > 0.

Пусть P(t) = 0. Если b > 0, вычеркнем в P(x) одночлен bxm. При больших положительных x значение полученного многочлена P1(x) положительно, но P1(t) = P(t) – btm < 0 (так как t ≠ 0, а m чётно), следовательно P1(x) имеет корни.

Если же b < 0, вычеркнем одночлен axn, тогда значения P(x) отрицательны при больших x, но P1(0) = P(0) = c > 0, значит, он тоже имеет корни.

По приведенной схеме мы получим в конце многочлен, имеющий корни и содержащий ровно два одночлена, один из которых P(0). Утверждение доказано.
4,8(41 оценок)
Ответ:
Franker10
Franker10
20.01.2021
На каждой стороне написано либо число 1, либо -1, а так как сумма равна нулю, то сторон обоих типов поровну. Обозначим это количество за m, тогда общее число сторон равно n = 2m (то есть четно). Если на стороне написано -1, тогда на концах написано -1 и +1, всего таких сторон m. Пусть есть еще k сторон, на обоих концах которых написано +1, тогда всего на концах всех сторон написано m+2k единиц, при этом каждую вершину на которой написано +1 посчитали дважды. Значит, m+2k - четное число, то есть и m четное, следовательно, n = 2 m делится на 4. 
4,6(20 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ