Бічна сторона рівнобічна трапеції 10√2 см. Вона утворює з основую куд 45 градусів. Знайти площу трапеції, якщо в неї можна вписати коло.
Пошаговое объяснение:
Прочитаем задачу:
Боковая сторона равнобедренной трапеции равна десять корней из двух , и образует с основанием угол 45 градусов.Найти площадь трапеции если в неё можно вписать окружность.
Опустим ВК⊥АD, ∠А=∠АВК=45°⇒ВК=АК
АВ²=2ВК²⇒ВК=√АВ²/2=10.
В четырехугольник можно вписать окружность тогда, когда суммы противоположных сторон четырехугольника равны.⇒
АВ+CD=BC+AD=2*10√2=20√2
S=BK*(BC+AD)/2 =10*(20√2)/2=100√2.
Как говорится "нетрудно показать, что" при этом условии в основание пирамиды (трапецию) можно вписать окружность и следовательно можно найти длины боковых сторон трапеции: (4+16)/2 = 10 см
Диаметр вписанной окружности можно найти как катет прямоугольного треугольника с гипотенузой 10 (боковая сторона трапеции) и катетом равным половине разности оснований: (16-4)/2 = 6 см
D = корень(10*10-6*6) = 8 см
То есть высоты боковых граней будут равны (D/2)/sin(30) = (8/2)/0.5 = 8 см
Теперь дело за площадью которая равна половине произведения найденной высоты (она одинакова у всех четырех боковых граней) на сумму сторон основания Sб = 0.5*8*(4+16+10+10) = 60 см2
2) бананы составляют 17/17-9/17= 8/17 остатка; значит
4/11*8/17=32/187 бананов от количества всех фруктов;
32/187=32 кг, 32*187/32=187 кг - количество всех фруктов;
ответ: в магазин завезли всего 187 кг фруктов.