Сторона правильного треугольника авс равна 3см.сторона ав расположена в плоскости а. двугранный угол между плоскостями авс и а равен 30 градусов. найдите длину проекции медианы треугольника авс, проведенной из вершины с на плоскость а
по теореме пифагора КВ = корень (АК*АК+АВ*АВ) = корень (12+16) = корень (28), ВК=СК, так как их проэкции АВ и АС на плоскость треугольника равны, следовательно ВКС равнобедренный треугольник, КО - высота треугольника ВКС (будет являться расстоянием между точкой К и прямой ВС) , так же является медианой, т. е. ВО=ОС=ВС/2 = Корень (3) КО = корень (ВК*ВК-ВО*ВО) =корень (28-3) = 5.
1) Ну вот смотри , слева в уравнений 720м, то есть это расстояние, а значит по известной формуле путь (при равномерном движений без ускорения) как известно равен S=vt, то есть скорость первого или одного из них положено что равна х, следовательно другого х+8 , а время ДО ВСТРЕЧИ ВСЕГДА ОДИНАКОВОЕ То есть первый за 6 часов проехал 6х каких то метров , а другой 6(x+8) каких то метров, а так как они встретились то в сумме эти пути равны 720 м. Значит 6x+6(x+8)=720
2) тоже самое слева весь путь , так как в условий сказано первый вышел на 2 часа раньше , то есть он уже проехал 2*53=106 км , а второй в это время только выехал то есть по сути проехал 0 км, тогда время отсчета пойдет когда второй выйдет только только , там предполагается что скорость второго равна х , то есть он проедет за 3 часа путь 3х км, а второй 3*53 значит в сумме они дадут полный путь, так как они встретились 2*53+3*53+3*x=385 53(2+3)+3x=385
3) Развернутый угол равен 180 гр, если второй х , то первый 2х, тогда третий 2х*3=6х и того в сумме x+2x+6x=180 9x=180 x=20 то есть углы равны 20 40 120
Если не известно сколько равен в градусах смежный угол то , точный ответа не будет , так как мы может взять любой градус
Дана функция у = x^3-3x^2+4 1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет. 2-Выяснить является ли чётной или нечётной. Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x³ - 3*x² + 4 = 4 - x³ - 3*x - Нет x³ - 3*x² + 4 = -4 - -x³ - -3*x² - Нет, значит, функция не является ни чётной, ни нечётной. 3-определить точки пересечения функции с координатными осями . График функции пересекает ось X при f = 0 значит надо решить уравнение: x³−3x²+4=0. В кубическом уравнении надо пробовать поиски корней с +-1. Подходит х = -1. Тогда заданное уравнение можно разложить на множители, поделив исходное уравнение на х+1. Получаем x³−3x²+4 = (х+1)(х²-4х+4) = (х+1)(х-2)² = 0. Имеем 2 корня: х = -1 и х = 2. График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^3 - 3*x^2 + 4. 0³−3*0²+4 = 4.Точка: (0, 4) 4-найти критические точки функции. Находим производную и приравниваем её нулю: y' = 3x²-6x = 3x(x-2). Имеем 2 критические точки: х = 0 и х = 2.5-определить промежутки монотонности (возрастания,убывания). Исследуем поведение производной вблизи критических точек. х = -0.5 0 0.5 1.5 2 2.5 y'=3x^2-6x 3.75 0 -2.25 -2.25 0 3.75. Где производная отрицательна - функция убывает, где положительна - функция возрастает. Убывает на промежутках (-oo, 0] U [2, oo) Возрастает на промежутках [0, 2] 6-определить точки экстремума. Они уже найдены: это 2 критические точки: х = 0 и х = 2. Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции. Минимум функции в точке: x = 2, Максимум функции в точке: х = 0. 7 -определить максимальное и минимальное значение функции. Значения функции в экстремальных точках: х = 2, у = 8-3*4+4 = 0, х = 0, у = 4.8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба. Найдем точки перегибов, для этого надо решить уравнение d2/dx2f(x)=0(вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции, d2/dx2f(x)=6(x−1)=0 Решаем это уравнение Корни этого ур-ния x1=1 Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках [1, oo) Выпуклая на промежутках (-oo, 1].