М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nika096
Nika096
07.01.2022 20:09 •  Математика

Реши ,записывая решения выражением. в конструкторе 5 пакетов с деталями по 19 детали в каждом.для изготовление модели самолета изросходовали 89 детали. сколько деталей осталось?

👇
Ответ:
дима2901
дима2901
07.01.2022
1) 5×19=95
2)95-89=6
ответ 6 деталей осталось
4,4(36 оценок)
Ответ:
katakoval
katakoval
07.01.2022
5 по 19
значит 5×19=95 деталлей
из них израсходованы 89 значит
95-89=6
ответ; осталось 6 деталей
4,6(9 оценок)
Открыть все ответы
Ответ:
myza05
myza05
07.01.2022

ответ: х=12

45-х=12+21       ← ( вначале просто сложим что можем сложить..))

45-х=33      ← (( получили обычное уравнение. решаем ..)) ↓↓

 х=45-33     ← (( решаем ))

   х=12      ← (( ответ ))

Пошаговое объяснение: эти уравнения надо решать так: просто умножим или сложим, вычтем, а потом решаем как обычно...

(( могу немного подсказать или дать идею например: 45-х=33 тут трудно думать как и что делать.. можно подставить мысленно простые числа.. 4-х=2 тут нам легко! - х=4-2.   также и с 45-х=33    х=45-43.

МАТЕМАТИКА ЭТО ПРОСТО!  удачи в учёбе!

4,4(61 оценок)
Ответ:
icon21
icon21
07.01.2022

(x^{2} + 6x + 5)(x^{2} + 6x + 8) 0

Метод интервалов.

Приравняем неравенство к нулю и найдем нули множителей:

(x^{2} + 6x + 5)(x^{2} + 6x + 8) = 0

1) \ x^{2} + 6x + 5 = 0\\x_{1} + x_{2} = -6\\x_{1} \cdot x_{2} = 5\\x_{1} = -5; \ x_{2} = -1

2) \ x^{2} + 6x + 8 = 0\\x_{1} + x_{2} = -6\\x_{1} \cdot x_{2} = 8\\x_{1} = -4; \ x_{2} = -2

Перепишем многочлены вида ax^{2} + bx + c на множители вида a(x - x_{1})(x - x_{2}), где x_{1} и x_{2} — корни квадратного уравнения ax^{2} + bx + c = 0

Имеем:

(x + 5)(x + 1)(x+4)(x+2) 0

Начертим координатную прямую и отметим выколотыми точками (так как неравенство строгое) нули множителей, и определим знак на каждом интервале ("+", если на этом интервале функция f(x) = (x + 5)(x + 1)(x+4)(x+2) выше оси абсцисс, "–" — ниже оси абсцисс). См. вложение.

Следовательно, промежутками, на которых функция f(x)= (x + 5)(x + 1)(x+4)(x+2) больше нуля (выше оси абсцисс), являются:

x \in (-\infty; -5) \cup (-4; -2) \cup (-1; +\infty)

Неравенство вида a \cdot b 0 выполняется в двух случаях:

\left[\begin{array}{ccc}\left\{\begin{array}{ccc}a 0\\b 0\\\end{array}\right \\\left\{\begin{array}{ccc}a < 0\\b < 0\\\end{array}\right\\\end{array}\right

Следовательно, рассмотрим первый случай:

\left\{\begin{array}{ccc}x^{2} + 6x + 5 0\\x^{2} + 6x + 8 0\\\end{array}\right

\left\{\begin{array}{ccc}(x + 5)(x + 1) 0\\(x+4)(x + 2) 0\\\end{array}\right

Здесь x = -5 и x = -1 — точки пересечения графика функции f(x) = x^{2} + 6x + 5 с осью абсцисс, и  x = -4 и x = -2 — точки пересечения графика функции g(x) = x^{2} + 6x + 8 с осью абсцисс.

Изобразим две параболы для каждого неравенства и определим те абсциссы, при которых каждая из них больше нуля (см. вложение). Имеем промежутки:

\left\{\begin{array}{ccc}x \in (-\infty; -5) \cup (-1; +\infty)\\x \in (-\infty; -4) \cup (-2; + \infty)\\\end{array}\right

Следовательно, промежутками, при которых оба неравенства выполняются одновременно, являются:

x \in (-\infty; -5) \cup (-1; +\infty)

Рассмотрим второй случай:

\left\{\begin{array}{ccc}x^{2} + 6x + 5 < 0\\x^{2} + 6x + 8 < 0\\\end{array}\right

\left\{\begin{array}{ccc}(x + 5)(x + 1) < 0\\(x+4)(x + 2) < 0\\\end{array}\right

Из тех же парабол определим те абсциссы, при которых каждая из них меньше нуля:

\left\{\begin{array}{ccc}x \in (-5; -1)\\x \in (-4; -2)\\\end{array}\right

Следовательно, промежутком, при котором оба неравенства выполняются одновременно, является:

x \in (-4; -2)

Объединим оба случая и получим решение неравенства:

x \in (-\infty; -5) \cup (-4; -2) \cup (-1; +\infty)

ответ: x \in (-\infty; -5) \cup (-4; -2) \cup (-1; +\infty)


(x^2+6x+5)*(x^2+6x+8)>0​
(x^2+6x+5)*(x^2+6x+8)>0​
4,5(67 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ