Билет №1 Теоретическая часть. 1. Вопрос: Какая функция является линейной? ответ: Линейной является функция вида: f=kx+b. 2. Вопрос: Как умножить степени с одинаковыми основаниями? ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней. Билет №2: Теоретическая часть. 1. Вопрос: Что является графиком линейной функции? Как можно построить такой график? ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой. 2. Вопрос: Как разделить степени с одинаковыми основаниями? ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним. Билет №3 Теоретическая часть. 1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат: ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции). Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0). В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b). 2. Вопрос: Как возвести степень в степень? ответ: Чтобы возвести степень в степень нужно перемножить степени. Например: P. s: Решать практическую часть не буду, т.к могу ошибиться...
Сначала надо найти точки максимума / минимума функции. Поскольку в этих местах прирост или уменьшение значения функции по определению равен нулю то надо приравнять первую производную (она описывает скорость изменения функции) функции к нулю: f'(x)=4x³/2-4*2x=0 4x³/2=4*2x x³=4x. Здесь видно, что если x=0 то уравнение будет выполнятся. x²=4 x= 2 или -2 или 0.
Теперь надо узнать, в этих точках минимум или максимум. Для этого б просто подставляев в уравнение найденные значения х а также цифры справа и слева от найденных точек. при x=-3: f(x)=81/2-36+1=5,5 при x=-2: f(x)=16/2-16+1=-7 => точка минимума при x=-1: f(x)=-2,5 при x=0: f(x)=1 => точка максимума при x=1: f(x)=-2,5 при x=2: f(x)=16/2-16+1=-7 => точка минимума при x=3: f(x)=81/2-36+1=5,5
Соответственно функция возрастает между x=-2 и x=0 и после x=2
9.6+1.2=10.8
3.6*3=10.8
Отв:10.8