Теорема 1. Первый признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
Доказательство. Пусть ABC и А1В1С1А1В1С1 — треугольники, у которых ∠A=∠A1;∠B=∠B1∠A=∠A1;∠B=∠B1, и, следовательно, ∠C=∠C1∠C=∠C1 . Докажем, что △ABC∼△A1B1C1△ABC∼△A1B1C1 (рис. 1).
Отложим на ВА от точки В отрезок ВА2ВА2, равный отрезку A1B1A1B1, и через точку А2А2 проведем прямую, параллельную прямой АС. Эта прямая пересечет ВС в некоторой точке С2С2 . Треугольники А1В1С1 и А2ВС2А1В1С1 и А2ВС2 равны: А1В1=А2ВА1В1=А2В по построению, ∠В=∠В1∠В=∠В1 по условию и ∠А1=∠А2∠А1=∠А2, так как ∠А1=∠А∠А1=∠А по условию и ∠А=∠А2∠А=∠А2 как соответственные углы. По лемме 1 о подобных треугольниках имеем: △A2BC2∼△ABC△A2BC2∼△ABC, и значит, △ABC∼△A1B1C1△ABC∼△A1B1C1 . Теорема доказана.
A²-b²=(a-b)(a+b). Если а и b имеют одинаковую четность, то а-b и a+b - оба четные, т.е. (a-b)(a+b) кратно 4. Если a и b имеют разную четность, то a-b и a+b - оба нечетные, т.е. a²-b² - тоже нечетное. Таким образом, в виде разности квадратов нельзя представить числа вида 4k+2. Любое число кратное 4 и любое нечетное можно представить в виде разности квадратов, т.к. 4k=(k+1)²-(k-1)² и 2k+1=(k+1)²-k². Значит количество чисел не представимых в виде разности квадратов равно количеству чисел вида 4k+2, т.е. в каждой четверке начиная с 1 имеется ровно одно такое число, а значит их количество равно 1000/4=250.
A²-b²=(a-b)(a+b). Если а и b имеют одинаковую четность, то а-b и a+b - оба четные, т.е. (a-b)(a+b) кратно 4. Если a и b имеют разную четность, то a-b и a+b - оба нечетные, т.е. a²-b² - тоже нечетное. Таким образом, в виде разности квадратов нельзя представить числа вида 4k+2. Любое число кратное 4 и любое нечетное можно представить в виде разности квадратов, т.к. 4k=(k+1)²-(k-1)² и 2k+1=(k+1)²-k². Значит количество чисел не представимых в виде разности квадратов равно количеству чисел вида 4k+2, т.е. в каждой четверке начиная с 1 имеется ровно одно такое число, а значит их количество равно 1000/4=250.
Доказательство. Пусть ABC и А1В1С1А1В1С1 — треугольники, у которых ∠A=∠A1;∠B=∠B1∠A=∠A1;∠B=∠B1, и, следовательно, ∠C=∠C1∠C=∠C1 . Докажем, что △ABC∼△A1B1C1△ABC∼△A1B1C1 (рис. 1).
Отложим на ВА от точки В отрезок ВА2ВА2, равный отрезку A1B1A1B1, и через точку А2А2 проведем прямую, параллельную прямой АС. Эта прямая пересечет ВС в некоторой точке С2С2 . Треугольники А1В1С1 и А2ВС2А1В1С1 и А2ВС2 равны: А1В1=А2ВА1В1=А2В по построению, ∠В=∠В1∠В=∠В1 по условию и ∠А1=∠А2∠А1=∠А2, так как ∠А1=∠А∠А1=∠А по условию и ∠А=∠А2∠А=∠А2 как соответственные углы. По лемме 1 о подобных треугольниках имеем: △A2BC2∼△ABC△A2BC2∼△ABC, и значит, △ABC∼△A1B1C1△ABC∼△A1B1C1 . Теорема доказана.