Построим высоту АН к стороне ВС. в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН. известно, что АВ = 10, пусть АН = ВН = х, тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный. угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов. пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3 АС=2*5 корней из 2/3= 10 корней из 2/3
Пусть искомые двузначные числа А имеют следующую запись ='ab' = 10a+b где а - число десятков, b -число единиц. b больше 1 в b раз ( т.к b/1=b) значит: 'ab'/b=b 'ab'=b^2 10a+b=b^2 b^2-b-10a=0 D=1+40a b1=(1+sqrt(1+40a))/2 b2 =(1-sqrt(1+40a))/2 - не подходит, т.к. выражение меньше 0, а число единиц отрицательным быть не может (т.к. sqrt(1+40a)>1 при всех а от 0 до 9) Значит: b=(1+sqrt(1+40a))/2 т.к. b -целое (по определению), то: (1+sqrt(1+40a))/2 - тоже целое, тогда 1+sqrt(1+40a) - целое, кратное 2, значит sqrt(1+40a) - целое, значит 1+40a -полный квадрат: 1+40а является полным квадратом, только при а =2;3;9 1)a=2; b=(1+sqrt(81))/2=(1+9)/2=5 'ab'=25 2)a=3; b=(1+sqrt(121))/2=(1+11)/2=6 'ab'=36 3)a=9; b=(1+sqrt(361))/2=20/2=10 -не подходит, т.к. 0≤b≤9 ответ: 25, 36