A) 31 ; 37 ; 41 ; 43 ; 47
B) 32; 33; 34; 35; 36; 38; 39; 40; 42; 44; 45; 46; 48; 49
Пошаговое объяснение:
Простое число — натуральное (целое положительное) число, имеющее ровно два различных натуральных делителя - единицу и самого себя. Другими словами, число А является простым, если оно больше 1 и при этом делится без остатка только на 1 и на А.
Натуральные числа, которые больше единицы и не являются простыми, называются составными. Для определения свойства числа как составное, достаточно указать только одного делителя строго между 1 и самим числом. Все четные натуральные числа, кроме 2 (которое единственное четное простое число) имеют число 2 как делитель.
A) Простые числа,большие 30, но меньше 50: 31 ; 37 ; 41 ; 43 ; 47
B) Все составные числа, большие 30, но меньше 50:
32, 34, 36, 38, 40, 42, 44, 46, 48 - четные числа, то есть делятся на 2.
33 - делится на 3
35 - делится на 5
39 - делится на 3
45 - делится на 5
49 - делится на 7
2. Если к десятичной дроби справа приписать любое количество нулей, то получится дробь, равная начальной.
3. Значение десятичной дроби, оканчивающийся нулями, не изменится, если последние нули в её записи отбросить.
4. Чтобы сравнить две десятичные дроби с равными целыми частями и разным количеством цифр после запятой, надо с приписывания нулей уравнять количество цифр в дробной части после чего сравнить полученные дроби поразрядно