1) 84 км.
2) 50 км/час.
Пошаговое объяснение:
От двух лодочных станций расстояние между которыми составляет 60 км отправились одновременно в одном направлении лодка и катер.
Скорость катера 28 км/ ч , скорость лодки 8 км/ч .
Через некоторое время катер догнал лодку . Найди расстояние , пройденное катером.
Решение.
Скорость догона катера равна 28-8=20 км/час
S=vt;
60=20t;
t=3 часа
За 3 часа катер км.
***
2) Дано.
Из пункта А и В одновременно в одном направлении выехали два поезда . Скорость первого 80 км/ч , расстояние между пунктами 120 км . Найди скорость второго поезда, если первый поезд догонит второй через 4 часа.
Решение.
Пусть скорость второго поезда равна х км/час
Скорость догона равна 80 - х км/час.
S= vt;
120 = (80-x)4;
120=320-4x;
4x=320-120;
4x= 200;
х=50км/час скорость второго поезда
Одним з відомих нам прикладів такого розкладання є розподільна властивість множення a(b + с) = ab + ас, якщо її записати у зворотному порядку: аb + ас – a(b + с). Це означає, що многочлен аb + ас розклали на два множники а і b + с.
Під час розкладання на множники многочленів із цілими коефіцієнтами множник, який виносять за дужки, обирають так, щоб члени многочлена, який залишиться в дужках, не мали спільного буквеного множника, а модулі їх коефіцієнтів не мали спільних дільників.
Розглянемо кілька прикладів.
Приклад 1. Розкласти вираз на множники:
1) 8m + 4;
2) at + 7ар;
3) 15а3b – 10а2b2.
Р о з в’ я з а н н я.
1)
Спільним множником є число 4, тому
8m + 4 = 4 . 2m + 4 ∙ 1 = 4(2m + 1).
2) Спільним множником є змінна а, тому
At + 7ap = a(t + 7p).
3) У даному випадку спільним числовим множником є найбільший спільний дільник чисел 10 і 15 – число 5, а спільним буквеним множником є одночлен а2b. Отже,
15а3b – 10а2b2 = 5а2b ∙ 3а – 5a2b ∙ b = 5а2b(3а – 2b).
Приклад 2. Розкласти па множники:
1) 2m(b – с) + 3р(b – с);
2) х(у – t) + c(t – у).
Р о з в ‘ я з а н н я.
1) У даному випадку спільним множником є двочлен b = c.
Отже, 2m(B – С) + 3р(B – C) = (b – с)(2m + 3р).
2) Доданки мають множники у – t і t – у, які є протилежними виразами. Тому в другому доданку винесемо за дужки множник -1, одержимо: c(t – у) = – с(у – t).
Отже, х(у – t) + c(t – у) = х(у – t) – с(у – t) = (у – t) (х – с).
124 = 2 * 2 * 31
36 = 2 * 2 * 3 * 3
НОД (120;124;36) = 2 * 2 = 4
910 = 2 * 5 * 7 * 13
360 = 2 * 2 * 2 * 3 * 3 * 5
1260 = 2 * 2 * 3 * 3 * 5 * 7
НОД (910;360;1260) = 2 * 5 = 10