Пусть вершинами прямоугольный трапеции являются точки A,B,C,D; где AB и CD - боковые стороны, BC и AD - основания; боковая сторона AB и основание AD образуют прямой угол. Пусть M, N, P, K - точки касания окружности и сторон трапеции AB, BC, CD, AD соответственно, тогда, проставив радует, получим, что OK = AK = AM = MB = BN = ON = 20 см, NC = CP = 8 см, PD = KD = 50 см; отсюда получается, что AB = AM + MB = 20 см + 20 см = 40 см; BC = BN + NC = 20 см + 8 см = 28 см; CD = CP + PD = 8 см + 50 см = 58 см; AD = AK + KD = 20 см + 50 см = 70 см; Периметр равен AB + BC + CD + AD = 196 см
Запишем одз: так как 2>0 то достаточно чтобы x≠1 и х>0 Так же logx(2)=1/log2(x) Перепишем так систему (фигурная скобка):01, после возведения 2 в эту степень выйдет х>2(знаки сохраняются потому что 2^x больше если больше степень (если число между 0 и 1 то знаки пришлось бы менять но мы возводим 2 в степень)) Logx(2)<=-1 перепишем так -1<=log2(x)<0(если число меньше минус 1 то обратное между -1 и 0 а если число -1 то обратное -1) возводим 2 в эту степень 2^-1<=х<2^0(знаки сохраняются об этом уже говорилось) тогда 1/2<=х<1 Выходит объединение [1/2;1) и (2;+бесконечность) ответ объединение [1/2;1) и (2;+бесконечность)
-0,4*(-250)*5*(-0,2)=100*(-1)=-100
7/13*(-13/7)*(-6,5)*0,4=-1*(-26)=26
(-7/3)*3/7*(-69)*6/23=-1*(-18)=18
-7/10*10/7*2,5*(-4)=-1*(-10)=10
-5/18*9/25*(-4/13)*(-26)=-1/10*8=-0,8