1) х+4 4/19=6 2/19
х = 6 2/19 - 4 4/19
х = 5 21/19 - 4 4/19
х = 1 17/19
2) х + 2х + х+7 = 39
4х = 39 - 7
4х = 32
х = 32 : 4
х = 8 (см) - одна сторона треугольника.
8 * 2 = 16 (см) - вторая сторона треугольника.
8 + 7 = 15 (см) - третья сторона прямоугольника.
3) Если площадь водохранилища Волгоградского обозначит за Х, то
Х + (Х+1463) + ( Х + 3383) = 14197
3Х = 14197 - 1463 - 3383
3Х = 9351
Х = 9351 : 3
Х = 3117 (км2) - площадь водохранилища Волгоградского.
3117 + 1463 = 4580 (км2) - площадь водохранилища Рыбинского.
3117 + 3383 = 6500 (км2) - площадь водохранилища Куйбышевского.
Пошаговое объяснение:
Это задача на теорему Байеса. Гипотезы:
Н1 -- взята винтовка с оптическим прицелом. Вероятность гипотезы Р (Н1) = 4/10 = 0.4.
Н2 -- взята винтовка без оптического прицела. Вероятность гипотезы Р (Н2) = 6/10 = 0.6.
Событие А -- попадание в цель. Условные вероятности попадания для каждой из гипотез: Р (А | H1) = 0.95, Р (А | H2) = 0.8.
Полная вероятность попадания: Р (А) = Р (А | H1) * Р (Н1) + Р (А | H2) * Р (Н2) = 0.4*0.95 + 0.6*0.8 = 0.86.
Апостериорная вероятность первой гипотезы при условии, что пуля попала в мишень:
P(H1 | A) = P(A | H1) * P(H1) / P(A) = 0.4*0.95/0.86.
Апостериорная вероятность второй гипотезы при условии, что пуля попала в мишень:
P(H2 | A) = P(A | H2) * P(H2) / P(A) = 0.6*0.8/0.86.
Отсюда P(H2 | A) > P(H1 | A), то есть более вероятно, что стрелок стрелял из винтовки без оптического прицела.