Требуется найти степень десятки, на которую делится нацело данное произведение. Каждый множитель входящий в данное произведение (ну единицу можно не считать), можно разложить в произведение простых множителей. Затем подсчитать общее количество простого множителя = 5, (степень пятерки). Ведь 10=5*2. Двойки тоже можно подсчитать таким же образом, но их очевидно намного больше. Поэтому искомая степень десяти равно степени пятерки. Теперь считаем, для начала выпишем все целые числа от 1 до 30, делящиеся на 5: 5; 10; 15; 20; 25; 30. Степень пятерки, на которую делятся эти числа могут быть не только единичной. Выпишем для каждого приведенного числа степень пятерки, на которую оно делится. Для 5, будет 5 в первой степени. Для 10, будет 5 в первой степени. -- 15 -- 5-- ---20 -- 5--- ---25 --- 5 во второй степени (т.е. 5^2). ---30 -- 5 в первой степени. Теперь сосчитаем все эти пятерки: 1+1+1+1+2+1 = 7. Т.о. данное в условие произведение делится на 5^7 (и не делится на большую степень пятерки). Степень же двойки будет намного больше (числа делящиеся на 2 и степени двойки встречаются гораздо чаще), поэтому среди них обязательно найдется 2^7. ответ. 7 нулей.
Пусть х - книг на 1 полке.
Тогда х + 7 - книг на 2 полке.
Уравнение:
х+х+7=25
2х=25-7
х=18/2
х=9 - книг на 1 полке.
х+7=16 - книг на 2 полке.