М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
JûšțĞîřł
JûšțĞîřł
07.02.2022 08:20 •  Математика

Составить на нахождение периметра и площади прямоугольника. решить ее

👇
Ответ:
48385
48385
07.02.2022
Одна сторона равен 3см а вторая равна 4см найти периметр 3×2+4×2=14см
3×4=12см-площадь
4,7(7 оценок)
Открыть все ответы
Ответ:
2005g6224
2005g6224
07.02.2022

Пусть nn -- чётное натуральное число, и мы играем для таблицы n×nn×n (в данном случае n=100n=100). Дано также чётное число N≥n2N≥n2 (здесь это N=105N=105). Покажем, как второй может выиграть, добившись выполнения неравенства A≤BA≤B. Для этого ему достаточно сделать так, чтобы суммы чисел во всех строках оказались равными. При этом значение сумм будет равно AA, и тогда сумма всех чисел таблицы окажется равна nAnA. Ясно, что при этом найдётся столбец, сумма чисел в котором будет не меньше nA/n=AnA/n=A, то есть B≥AB≥A.

Разобьём все числа каждой строки на пары, что возможно ввиду чётности nn (например, покроем их горизонтальными плитками 1×21×2, где клетки одной и той же плитки образуют пару). Далее, каждому натуральному числу k≤Nk≤N сопоставим парное, равное N+1−kN+1−k. Парные числа в сумме дают нечётное число N+1N+1, поэтому не могут быть равны.

Стратегия второго состоит в том, чтобы в ответ на ход первого вписывать парное число в парную клетку. Тогда в каждой паре (плитке) сумма чисел равна N+1N+1, и в каждой строке сумма чисел будет равна A=(N+1)n2A=(N+1)n2, что и требовалось.

4,8(49 оценок)
Ответ:
AndruxaS
AndruxaS
07.02.2022
Для поиска экстремумов надо найти нули первой производной функции.
1.
1) F(x) = 2 - 9X и F'(x) = - 9 -  нулей и экстремумов - нет.
2) F(x) = x²+4x+5 и F'(x) = 2x+4 =0 при х = -2.
3) F(x) = x³ + 3x² - 9х и F'(x) = 3x² + 6x - 9 = 3*(х+3)(х-1) = 0 при х1=-1 и х2=3.
2,
1) F(x) = 2x+5 и F'(x) = 2 - прямая - возрастает Х∈(-∞,+∞).
2) F(x) = x²-5x+1 и F'(x) =2x-5=0 при Х=2,5.
Убывает - Х∈(-∞,2,5]
Минимум - F(2,5) = -5,25
Возрастает - X∈[2.5,+∞)
3.
1)
F(x) = x(x + 2)² = x³+4x²+4x и
F'(x) = 3x²+8x+4= 3(x + 2/3)(x + 2)
Минимум - F(- 2/3) = - 1.185
Максимум - F(2) = 0.
2)
F(x) = 2x⁴ - 4x² + 1
F'(x) = 8x³ - 8x = 8*x(x-1)(x+1) - 
Два минимума - Fmin(-1) = F(1) = -1.
Максимум - Fmax(0) = 1

Номер 1 найдите критические точки функции 1) f(x)=2-9x 2)f(x)=[^2+4x+5 3)f(x)=x^3+3x^2-9x номер 2 на
4,5(18 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ