Рассмотрим все пятицифровые наборы, которые заканчиваются четной цифрой {0,2,4}. Последнюю цифру выбираем 3-мя предпоследнюю - 4-мя, третью - 3-мя, вторую - 2-мя, первую - одним, итого 1⋅2⋅3⋅4⋅3=72. Среди этих наборов запрещенными есть наборы, начинающиеся с нуля, т.е. 0∗∗∗∗. Первая цифра выбрана (одним последнюю цифру выбираем 2-мя из {2,4}. Уже выбраны две цифры, осталось три, поэтому вторую выбираем тремя третью цифру - двумя четвертую - одним, имеем 1⋅3⋅2⋅1⋅2=12. Итого 72−12=60 чисел, удовлетворяющих условию задачи.
Пошаговое объяснение:
1)(9347+153)-х=374
9500-х=374
-х=374-9500
-х=-9126
Х=9126
2)х-(285+386)=190
х-671=190
Х=190+671
х=761
3)х-(300+194)=240
х-494=240
х=240+494
х=734
4)х-300-194=240
х-494=240
х=240+494
х=734