Элементарно! чтобы число делилось на 16 последние 4 цифры должны делиться на 16. Значит, необходимо посчитать для начала общее количество четырёхзначных чисел которые делятся на 16 у которых 2 и 3 цифра "16", а затем умножить на 9 так как таких комбинаций среди пятизнычных чисел 9, х меняется от 1 до 9. Давайте считать, что это искомое число обязано делиться на 4, что очевидно. тогда 6z должно делиться на 4 таких вариантов только 60 64 и 68 z может принимать значения только 0 4 и 8. Значит числа которые мы ищем должны выглядеть так y160 или у164 или у168 необходимо проверить только 27 вариантов Чтобы закончить решение задачи, я это сделаю, выпишу только удовлетворяющие числа: 2160 4160 6160 8160 1168 3168 5168 7168 9168 тоесть 9 чисел. Тогда среди 5-значных чисел которые делятся на 16 без остатка 81 ответ:81
Доказательства: если всего 14 учеников решило 58 задач,то при этом каждый ученик в среднем решит 4,1 задачи,но при этом есть ученики,которые решили по 1,2,3 задачи.Если мы берем как обязательное,что хотя бы 1 ученик решил 5 задач,мы получаем-1 по 5 задачи на остальных 13 учеников по 53 задач.при этом условии на оставшихся 13 учеников в среднем 4,1 задачи,а это значит,что у нас уже есть как минимум 3 ученика, решившие по 5 задач. А именно если 3 учеников решили по 5 задач, то на остальных 11 приходится в среднем по 3,9 задач