36/4=9
32/4=8
28/4=7
В решении.
Пошаговое объяснение:
Найдите наибольший общий делитель и наименьший кратное у чисел а и б если а =3•5²•7² и б= 2³•5•7.
Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое все исходные числа делятся без остатка. Наибольший общий делитель сокращённо записывается как НОД.
Как вычислить:
1) Разложить числа на множители;
2) Найти общие множители, то есть те, которые есть у всех чисел;
3) Вычислить произведение этих множителей, это и есть НОД чисел.
3•5²•7² = 3675 = 3 * 5 * 5 * 7 * 7;
2³•5•7 = 280 = 2 * 2 * 2 * 5 * 7;
НОД = 5 * 7 = 35.
Наименьшее общее кратное нескольких чисел – это наименьшее число, которое делится на каждое из исходных чисел без остатка. Наименьшее общее кратное сокращённо записывается как
Как вычислить:
Для вычисления НОК нужно вычислить произведение исходных чисел и затем разделить его на предварительно найденный НОД.
3675 * 280 : 35 = 29400.
НОК = 29400.
А(18√3; 18)
Пошаговое объяснение:
Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
Итак, запишем координаты точки А: А(18√3; 18)
1) 36/4=9 кроликов
2) 32/4=8 кроликов
3) 28/4=7 кроликов