Первоначально число М = 2d, т.к. число делится на 2, а наибольший делитель равен d
посмотрим как меняется число:
первая операция: 2d + d = 3d - снова наибольший делитель d, т.к. d не делится на 2
вторая операция: 3d + d = 4d - наибольший делитель 2d
третья операция: 4d + 2d = 6d - наибольший делитель 3d
четвертая операция: 6d + 3d = 9d - наибольший делитель 3d
пятая операция: 9d + 3d = 12d - наибольший делитель 6d
шестая операция: 12d + 6d = 18d - наибольший делитель 9d
седьмая операция 18d + 9d = 27d - наибольший делитель 9d
заметим, что каждая 3n-ая операция образует число 3ⁿ*2d = 3ⁿ*M
при n = 300 получим нужное число операций:
3 * n = 3 * 300 = 900
ответ: 900 операций
Первоначально число М = 2d, т.к. число делится на 2, а наибольший делитель равен d
посмотрим как меняется число:
первая операция: 2d + d = 3d - снова наибольший делитель d, т.к. d не делится на 2
вторая операция: 3d + d = 4d - наибольший делитель 2d
третья операция: 4d + 2d = 6d - наибольший делитель 3d
четвертая операция: 6d + 3d = 9d - наибольший делитель 3d
пятая операция: 9d + 3d = 12d - наибольший делитель 6d
шестая операция: 12d + 6d = 18d - наибольший делитель 9d
седьмая операция 18d + 9d = 27d - наибольший делитель 9d
заметим, что каждая 3n-ая операция образует число 3ⁿ*2d = 3ⁿ*M
при n = 500 получим нужное число операций:
3 * n = 3 * 500 = 1500
ответ: 1500 операций
Интерпретируя условие, нам надо получить наибольшее число значений k и m таких, что
Заметим, что если мы уже выбрали для некоторых k и m множители 2 и 3, то какой бы из множителей 2 и 3 для оставшихся 5 чисел мы не выбрали, ни одно из полученных 5 произведений не равно какому-либо из первых 2. Действительно. Предположим, что существует такое целое l, что верно одно из следующих равенств:
Мы сразу же получим, что для первого случая k=l, для второго l=m, для третьего l=k и для четвертого l=m.
То есть совпасть могут не более 2 результатов (одновременно, несколько пар возможно).
Найдем наибольшее количество таких пар.
Заметим, что
кратно 3, а
кратно 2.
Они равны, значит
Предположим, что их три. Тогда
Тогда:
Это наши 3 равенства, составленные для наших 3 пар равных чисел. Но одно из чисел a+k, a+k+2, a+k+4 делится на 3, значит это число уже стоит в одном из числителей в левой части. Но, как замечалось ранее, в двух сразу оно стоять не может. То есть либо это число идет с множителем 2 и стоит в левой части одного из равенств, либо с множителем 3 в правой части одного из равенств.
Значит пар одинаковых результатов не более 2. А на это можно привести пример:
Возьмем числа 2, 3, 4, 5, 6, 7, 8
Умножим первое на 3, второе на 2, третье на 3 и пятое на 2, а остальные - как угодно. На количество равных это не повлияет. Получим:
Таким образом минимальное количество различных 5.
ответ: 5