В конце марта 1771 года, во время первого путешествия по Италии, Леопольд Моцарт с сыном задержались в Болонье, чтобы познакомиться с падре Мартини. Этот выдающийся композитор, историк и теоретик музыки был членом и фактическим руководителем болонской Филармонической академии, самого известного музыкального института своего времени. Диплом академии открывал двери ко многим престижным и хорошо оплачиваемым должностям. Отец Моцарта постарался устроить знакомство сына с падре Мартини. Мартири сразу же отметил талант Моцарта и с радостью взялся готовить его к экзамену в Филармоническую академию. Три месяца подряд Моцарт ходил к нему каждый день, постигая под его руководством тайны контрапункта и прочие музыкальные премудрости. 9 октября он с успехом сдал экзамен, переработав для четырех партий григорианский антифон «Quaerite primum regnum Dei».
:(
Забегая вперед, скажу, что никаких особенных преимуществ диплом Филармонической академии Моцарту не дал, однако о занятиях с падре Мартини он сохранил самые благодарные воспоминания.
Пошаговое объяснение:
Пусть в некоторый момент мы перевернули 4 стакана, из которых k стаканов стояли вверх дном, а 4 – k – правильно (k может принимать значения от 0 до 4). После переворачивания из этих четырёх стаканов k будут стоять правильно, а 4 – k – вверх дном. Таким образом, количество стаканов, стоящих вверх дном, изменится на чётное число 4 – k – k = 2(2 – k). Таким образом, чётность числа стаканов, стоящих вверх дном, не меняется. Поэтому в любой момент имеется нечётное число стаканов, стоящих вверх дном (так как вначале так стояли 7 стаканов).
Второй Заметим, что каждый стакан должен быть перевернут нечётное число раз, а всего стаканов нечётное число, то есть мы должны сделать нечётное число переворотов. Однако при каждом ходе переворачивается чётное число стаканов. Следовательно, перевернуть все стаканы вниз дном невозможно.
9,18,27,36,45,54,и т.д.