Вверном числовом неравенстве а-b> c-d одно из чисел в левой части и одно из чисел в правой части увеличили на 1 ,после чего неравенство стало неверным .какие числа увеличили ?
Всего есть 4 варианта увеличить числа: a и с, a и d, b и с, b и d. Если увеличить числа а и с, то неравенство останется таким же с той лишь разницей, что к обоим частям прибавили по 1, истинность неравенства это не меняет. Аналогично, при увеличении чисел b и d обе части неравенства уменьшатся на единицу, но истинность неравенства останется такой же. Если увеличить числа а и d, то левая большая часть станет еще большей, а правая меньшая часть станет еще меньше, таким образом, неравенство станет еще строже и останется истинным. Соответственно увеличивали числа b и c: Действие аналогично прибавлению 2 к правой части и именно оно изменило истинность неравенства
Дано уравнение кривой : 1. Определить тип кривой. 2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат. 3. Найти соответствующие преобразования координат. Решение. Приводим квадратичную форму B = y2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы:точки ↓ B= Находим собственные числа и собственные векторы этой матрицы: (0 - z)x1 + 0y1 = 0 0x1 + (1 - z)y1 = 0 Характеристическое уравнение: Характеристическое уравнение: 0 - λ ;0 = 0 ;1 - λ= D = (-1)2 - 4 • 1 • 0 = 1 x1=1 x2=0 Исходное уравнение определяет параболу (λ2 = 0) Вид квадратичной формы: y2 Выделяем полные квадраты: для y1: (y12-2•3y1 + 32) -1•32 = (y1-3)2-9 Преобразуем исходное уравнение: (y1-3)2 = 16x -16 Получили уравнение параболы: (y - y0)2 = 2p(x - x0) Ветви параболы направлены вправо, вершина расположена в точке (x0, y0), т.е. в точке (1;3) Параметр p = 8 Координаты фокуса: F= Уравнение директрисы: x = x0 - p/2 x = 1 - 4 = -3
Всего есть 4 варианта увеличить числа: a и с, a и d, b и с, b и d.
Если увеличить числа а и с, то неравенство останется таким же с той лишь разницей, что к обоим частям прибавили по 1, истинность неравенства это не меняет.
Аналогично, при увеличении чисел b и d обе части неравенства уменьшатся на единицу, но истинность неравенства останется такой же.
Если увеличить числа а и d, то левая большая часть станет еще большей, а правая меньшая часть станет еще меньше, таким образом, неравенство станет еще строже и останется истинным.
Соответственно увеличивали числа b и c:
Действие аналогично прибавлению 2 к правой части и именно оно изменило истинность неравенства