М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
arishatopic
arishatopic
11.12.2020 03:24 •  Математика

Выполните вычитание б)6-3 2/5 г)8-3 3/4 е)7-1 2/3

👇
Ответ:
beelan3
beelan3
11.12.2020
Б) 5 5/5 - 3 2/5= 2 3/5
г) 7 4/4 - 3 3/4 = 4 1/4
е) 6 3/3 - 1 2/3 = 5 1/3
я не стала списывать начальный пример
4,7(51 оценок)
Открыть все ответы
Ответ:
Hitroymnik
Hitroymnik
11.12.2020

\begin{cases} x_1'=4x_1+8x_2+2e^{3x}\\ x_2'=-3x_1-6x_2+e^{3x}\end{cases}

Дифференцируем первое уравнение:

x_1''=4x_1'+8x_2'+2\cdot3e^{3x}

Подставим выражение для x_2':

x_1''=4x_1'+8(-3x_1-6x_2+e^{3x})+6e^{3x}

x_1''=4x_1'-24x_1-48x_2+8e^{3x}+6e^{3x}

x_1''=4x_1'-24x_1-48x_2+14e^{3x}

Домножим первое уравнение системы на 6 и сложим его с полученным уравнением:

\begin{cases} 6x_1'=24x_1+48x_2+12e^{3x}\\ x_1''=4x_1'-24x_1-48x_2+14e^{3x}\end{cases}

x_1''+6x_1'=4x_1'-24x_1-48x_2+14e^{3x}+24x_1+48x_2+12e^{3x}

x_1''+2x_1'=26e^{3x}

Составим однородное уравнение, соответствующее данному неоднородному:

x_1''+2x_1'=0

Составим характеристическое уравнение:

\lambda^2+2\lambda=0

\lambda(\lambda+2)=0

\lambda=0;\ \lambda=-2

Общее решение однородного уравнения:

X_1=C_1+C_2e^{-2x}

Частно решение неоднородного уравнения ищем в виде:

\overline{x_1}=Ae^{3x}

Найдем первую и вторую производную:

\overline{x_1}'=3Ae^{3x}

\overline{x_1}''=9Ae^{3x}

Подставим в неоднородное уравнение:

9Ae^{3x}+2\cdot3Ae^{3x}=26e^{3x}

9A+6A=26

15A=26

A=\dfrac{26}{15}

Частное решение неоднородного уравнения:

\overline{x_1}=\dfrac{26}{15}e^{3x}

Общее решение неоднородного уравнения:

x_1=X_1+\overline{x_1}

x_1=C_1+C_2e^{-2x}+\dfrac{26}{15}e^{3x}

Найдем первую производную:

x_1'=-2C_2e^{-2x}+\dfrac{26}{15}\cdot3e^{3x}=-2C_2e^{-2x}+\dfrac{26}{5}e^{3x}

Выразим из первого уравнения x_2:

x_2=\dfrac{x_1'-4x_1-2e^{3x}}{8}

x_2=\dfrac{-2C_2e^{-2x}+\dfrac{26}{5}e^{3x}-4\left(C_1+C_2e^{-2x}+\dfrac{26}{15}e^{3x}\right)-2e^{3x}}{8}

x_2=\dfrac{-2C_2e^{-2x}+\dfrac{26}{5}e^{3x}-4C_1-4C_2e^{-2x}-\dfrac{104}{15}e^{3x}-2e^{3x}}{8}

x_2=\dfrac{-4C_1-6C_2e^{-2x}-\dfrac{56}{15}e^{3x}}{8}

x_2=-\dfrac{1}{2}C_1-\dfrac{3}{4}C_2e^{-2x}-\dfrac{7}{15}e^{3x}

Общее решение системы:

\begin{cases} x_1=C_1+C_2e^{-2x}+\dfrac{26}{15}e^{3x}\\ x_2=-\dfrac{1}{2}C_1-\dfrac{3}{4}C_2e^{-2x}-\dfrac{7}{15}e^{3x}\end{cases}

4,7(19 оценок)
Ответ:
Исбанка
Исбанка
11.12.2020

в 3 номере под а):

показатели корней разные (12 и 6), мы можем получить одинаковые, умножив показатель 6 на 2, поэтому и подкоренное выражение домножаем на 2:

было: √6ой степени из 5⁵, стало: √12ой степени из 5¹⁰

то же самое в номере 3 под б):

показатели корней разные (квадратный корень из 3 и кубический корень из 9), мы можем получить одинаковые, домножив квадратный корень на 3 (чтобы получить 6) и кубический корень на 2 (чтобы получить 6), поэтому и подкоренные выражения домножаем на 2:

было: √2ой степени из 3, стало: √6ой степени из 3³ и второй множитель: было: √3ей степени из 9, стало: √6ой степени из 9²


сделать все задания сделать все задания
4,4(55 оценок)
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ