М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
simonovfggg
simonovfggg
28.05.2020 16:09 •  Математика

Найти среднее значение, дисперсию и среднее квадратическое отклонение заработной платы сотрудников фирмы за месяц. заработная плата каждого сотрудника такова: 4300, 7400, 5200, 5600, 7800, 6400, 5700, 6200, 4800, 7000. среднее значение нашел, а вот как дисперсию и среднее квадр-е отклонение найти?

👇
Ответ:
ZolotoNaMoeyShee
ZolotoNaMoeyShee
28.05.2020
Матожидание mx=(4300+ 7400+ 5200+ 5600+ 7800+ 6400+ 5700+ 6200+ 4800+7000)/10=6040
Дисперсия D=m(X-mx)²=m(-1740²; 1360²;-840²; -440²; 1760²; 360²; -340²; 160²; -1240²; 960²)=(-1740²+1360²-840² -440²+ 1760²+ 360²-340² +160²-1240²+ 960²)/10=44400
СКО равен корню из дисперсии и равно √44400=210,713
4,8(24 оценок)
Открыть все ответы
Ответ:

Часть A

A1. Упростите выражение .

1.2.3.4.

       Решение. Поскольку , получаем:

.

Правильный ответ: 2.

A2. Найдите значение выражения .

1.2.3.4.

       Решение. Так как  и  при  имеем:

.

Правильный ответ: 3.

A3. Вычислите .

1.2.3.4.

       Решение. Используя формулы  и  (), получаем:

.

Правильный ответ: 1.

A4. На каком из следующих рисунков изображен график функции, возрастающий на промежутке ?

1.2.3.4.

       Решение. Функция возрастает на промежутке, если для любых двух значении аргумента из этого промежутка большему из них соответствует большее значение функции.
Правильный ответ: 4.

A5. Найдите множество значений функции .

1.2.3.4.

       Решение. Так как , имеем:

.

Правильный ответ: 2.

A6. Найдите область определения функции .

1.2.3.4.

       Решение. Область определения данной функции задается системой 
Имеем:



С2. Найдите все значения , при каждом из которых расстояние между соответствующими точками графиков функций  и  меньше, чем 0,25.
       Решение. Искомое множество совпадает с множеством решений неравенства .
       Решим это неравенство:


.

ответ: .

С3. Требуется разметить на земле участок  площадью 2000 м2, состоящий из трех прямоугольных частей и имеющий форму, изображенную на рисунке, где ,  и . Найдите наименьшее значение периметра такого участка и какие-либо значения длин ,  и , при которых периметр является наименьшим.
       Решение. Обозначим через ,  и  соответственно длины отрезков ,  и площадь участка . Тогда периметр  данного участка выражается формулой .
О       ценим площадь прямоугольника :

.

       Значит, , откуда, учитывая , получаем . Следовательно, .
       Найдем наименьшее значение функции  на промежутке . (Учитывая условие, можно более точно указать интересующий нас промежуток: .)
       На основании теоремы о среднем арифметическом и среднем геометрическом двух неотрицательных чисел получаем . При этом равенство достигается, тогда и только тогда, когда , откуда, учитывая , получаем . (Исследование функции  можно было также провести с производной.)
       Таким образом,  – наименьшее значение функции  на промежутке , и достигается оно при . При этом .
ответ: 200 м, 50 м, 50 м, 15 м.

C4. В пирамиде  грани  и перпендикулярны, . Тангенс угла между прямой  и плоскостью  равен . Точка  выбрана на ребре  так, что . Точка  лежит на прямой  и равноудалена от точек  и . Центр сферы, описанной около пирамиды , лежит на ребре , площадь этой сферы равна . Найдите объем пирамиды .
       Решение. Опустим перпендикуляры  и  из точек и  соответственно на плоскости  и  и перпендикуляр  из точки  на прямую , а также построим отрезки  и  (см. рис).
       Поскольку плоскости  и  перпендикулярны, точки  и  лежат на их линии пересечения – прямой  и отрезки  и  перпендикулярны . Кроме того, на основании теоремы о трех перпендикулярах, , так как  – проекция  на плоскость .
       Отрезки  и  – проекции равных наклонных  и  на плоскость , следовательно, . Таким образом, отрезок  является высотой равнобедренного треугольника , а, следовательно, является и его медианой, откуда .
       Центр сферы, описанной около пирамиды , лежит на ребре , следовательно,  – диаметр  этой сферы. Так как любое сечение сферы плоскостью есть окружность, углы  и  – вписанные углы, опирающиеся на диаметр , следовательно,  и .
       Так как  – проекция  на плоскость , угол  является углом между прямой  и плоскостью .
       Далее имеем:
1) По условию, площадь сферы, описанной около пирамиды , равна , откуда , , .
2) Прямые  и  параллельны, так как они лежат в одной плоскости и перпендикулярны одной прямой , следовательно, , откуда , , а, значит, .
3) В прямоугольном треугольнике  тангенс угла  равен , следовательно, . Тогда , , , .
4) Треугольники  и  имеют общую высоту, проведенную из вершены , следовательно, отношение их площадей равно отношению оснований  и , откуда получаем , .
5) Прямоугольные треугольники  и  подобны, так как имеют общий острый угол , следовательно, , откуда .
       Окончательно имеем

.

ответ: .

C5. Найдите все значения , при каждом из которых оба числа  и  являются решениями неравенства .
       Решение. Пусть . Тогда


.

       Решим теперь неравенство .
1) Если , то данное неравенство равносильно системе неравенств 
       Решая эту систему, последовательно получаем:


.

       Таким образом, все числа промежутка  являются решениями данного неравенства.
2) Если , то данное неравенство равносильно неравенству , решая которое, получаем:

.
4,6(21 оценок)
Ответ:
EgaBelyaev
EgaBelyaev
28.05.2020
Физические упражнения одновременно повышают выносливость и силу мышц, которые поддерживают правильное взаиморасположение костей скелета человека, без чего также невозможно постоянно поддерживать правильную осанку.

Влияние физических упражнений на сердечно-сосудистую систему обусловлен, с одной стороны, тренировкой и укреплением сердечной мышцы, а с другой — нормализацией сложного механизма регуляции деятельности данного органа и всей системы кровообращения, вследствие чего:

Улучшаются коронарное кровообращение и обменные процессы в сердце;Улучшается венозная гемодинамика, что притоку крови к сердцу;Повышается эффективность систолы;Снижается количество холестерина в крови. 
4,8(30 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ