М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Korolevanet
Korolevanet
23.03.2021 22:20 •  Математика

Сумма трех последовательных целых чисел равна 222. найди эти числа.

👇
Ответ:
pavelmishulski
pavelmishulski
23.03.2021
73, 74, 75 это правильно 
4,7(60 оценок)
Ответ:
shitovilya
shitovilya
23.03.2021
Пусть одно число- это х, тогда два другие (х+1) и (х+2) Тогда составим систему и решим ее: х+х+1+х+2=222
3х=219
х= 73
Значит числа будут такие: 73,74,75
4,7(93 оценок)
Открыть все ответы
Ответ:

Пусть студенты сдавали зачёт n раз. Разобьём студентов на несколько групп по 3ⁿ студентов в каждой и "остаток". На каждом зачёте из группы зачёт будет успешно сдавать только треть студентов, а "ещё треть студента" будет каждый раз браться из "остатка". Заметим, что теперь имеет значение только количество студентов в остатке. Если оно будет целым после каждого зачёта, то и всё количество студентов будет целым.

Методом Математической Индукции докажем, что условие будет выполнено только если в остатке было 3ⁿ - 1 студентов. База (n = 1) очевидна. Теперь выполним переход (от n к n+1). Так как нам известно, что сдать зачёт n раз студенты могли только при наличии 3ⁿ - 1 студентов в остатке, то n + 1 раз сдать зачёт они могли только в случае 3ⁿ - 1, 2 * 3ⁿ - 1 и 3^(n+1) - 1 студентов  в остатке. Первый не подходит, так как по предположению индукции сдать n зачётов не получится, если в остатке меньше 3ⁿ - 1 студента (предполагается, что один зачёт они уже сдали). Во втором случае проведём один зачёт:

(2 * 3ⁿ - 1) * 2/3 - 1/3 = 4 * 3^(n-1) - 1 ≡ 3^(n-1)-1 (mod 3ⁿ)

По предположению индукции, в остатке не требуемое количество студентов, следовательно, ещё n зачётов провести не удастся.

В третьем случае тоже проведём один зачёт:

(3^(n+1) - 1) * 2/3 - 1/3 = 2 * 3ⁿ - 1 ≡ 3ⁿ - 1 (mod 3ⁿ)

А здесь по предположению индукции провести n зачётов удастся. Переход доказан.

Следовательно, для проведения n зачётов изначально должно было быть k * 3ⁿ - 1 студентов.

Теперь посчитаем количество студентов, так и не сдавших зачёт, из k * 3ⁿ - 1 студентов. В каждой группе зачёт не сдаст 2ⁿ студентов (так как на каждом зачёте количество студентов в каждой из групп умножается на 2/3). В остатке же останется 2ⁿ - 1 студент, так как после каждого зачёта сохраняется слагаемое "-1". Итак, осталось k * 2ⁿ - 1 студентов. Подставим k = 1 и n = 5 - получим ответ исходной задачи, 31.

ответ: 31 (первый вопрос).

4,8(54 оценок)
Ответ:
цветок82
цветок82
23.03.2021
Все люди на земле разные. кто- то мечтает о космосе, кто- то хочет быть водителем. а есть на свете человек, для которого самое важное, Родину защищать. он высокого роста, широкоплечий и очень добрый. обязательно добрый, потому что только добрый человек будет искренне , всей душой любить свою Родину. у него сильное волевое лицо с голубыми, как небо глазами. его руки привыкшие к труду, обветренны ветрами и холодом. у него твёрдый взгляд, ведь он воин и должен твёрдо быть уверен в том, что он делает. а еще может быть он чей- то отец или брат. а может просто сосед по площадке.
4,8(87 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ