Допустим, что такое сложение существует.
Запишем сложение в виде столбика:
М Э Х Э Э Л Э
У Ч У У Т А Л
5 0 5 2 0 2 0
Для удобства пронумеруем разряды: единицы будут 1, десятки -- 2 и так далее до 7.
1. Рассмотрим 1 разряд. "Э + Л = 0".
Это возможно в 2-х случаях:
Э = Л = 0 (не подходит, так как цифры должны быть разные);
Э + Л = 10 (тогда десяток перейдёт на разряд вперёд и останется 0).
Остаётся Э + Л = 10.
2. Рассмотрим 3 разряд. "Э + Т = 0". Возможно три случая:
Э = Т = 0 (не подходит, так как цифры должны быть разные);
Э + Т = 10 (не подходит, так как тогда Т = Л (пункт 1))
Э + Т = 9 (плюс единица из переполнения)
Остаётся Э + Т = 9.
3. Рассмотрим 6 разряд. "Э + Ч = 0". Возможно три случая:
Э = Ч = 0 (не подходит, так как цифры должны быть разные);
Э + Ч = 10 (не подходит, так как тогда Ч = Л (пункт 1))
Э + Ч = 9 (не подходит, так как тогда Ч = Т (пункт 2))
Таким образом, "Э + Ч ≠ 0", а это противоречит условию.
Значит, такого решения быть не может. Что и требовалось доказать.
15,7 + 1,8 = 17,5 к/ч;
2) Найдем расстояние пройденной катером по течению реки:
= 2,5 * 17,5 = 43,75 км;
3) Найдем скорость катера против течения реки:
15,7 - 1,8 = 13,9 км/ч;
4) Найдем время, за которое катер вернется обратно:
43,75 : 13,9 = 3,15 ч
3,15 ч > 3 ч
ответ: Катеру не хватит 3х часов, чтобы вернуться обратно против течения реки.