Используем формулу расстояния между двумя точками:
MN² = (х'' - х')² + (y'' - y')²
MN²= (-4+5)² + (4-1)²
MN²= 1+9
MN = √10
Аналогично со сторонами NP,PQ,QM:
NP²=(-1+4)²+(5-4)² PQ²=(-2+1)²+(2-5)²
NP²= 9+1 PQ²= 1+9
NP=√10 PQ=√10
QM²=(-5+2)²+(1-2)²
QM²= 9+1
QM=√10
Так как NM=NP=PQ=QM, тогда MNPQ - квадрат.
Квадрат - это параллелограмм с равными сторонами и кутами по 90°. Тогда MNPQ - параллелограмм.
По аналогии находим NQ и MP - диагонали. NQ = MP - диагонали квадрата.
NQ² = (-2+4)²+(2-4)²
NQ² = 4+4
NQ² = 8
NQ =√8
NQ =2√2
Тогда MP =2√2
Используем формулу расстояния между двумя точками:
MN² = (х'' - х')² + (y'' - y')²
MN²= (-4+5)² + (4-1)²
MN²= 1+9
MN = √10
Аналогично со сторонами NP,PQ,QM:
NP²=(-1+4)²+(5-4)² PQ²=(-2+1)²+(2-5)²
NP²= 9+1 PQ²= 1+9
NP=√10 PQ=√10
QM²=(-5+2)²+(1-2)²
QM²= 9+1
QM=√10
Так как NM=NP=PQ=QM, тогда MNPQ - квадрат.
Квадрат - это параллелограмм с равными сторонами и кутами по 90°. Тогда MNPQ - параллелограмм.
По аналогии находим NQ и MP - диагонали. NQ = MP - диагонали квадрата.
NQ² = (-2+4)²+(2-4)²
NQ² = 4+4
NQ² = 8
NQ =√8
NQ =2√2
Тогда MP =2√2
2 2/5*(3 2/5- 1 11/15)=2 2/5*1 2/3=11/15;
2 пример:
6 3/8*1 7/17-2 3/8*1 1/4+2/5=9-2 31/32+2/5=6 69/160
3 пример:
6 3/7*3 1/3 : 1 2/7=21 3/7 : 1 2/7=16 2/3
4 пример:
(7 2/3 - 5 4/5):2 4/5=1 13/15 : 2 4/5=2/3