Для решения выражения 815 * 204 - (8963 + 68077) : 36; 9676 + 12237 - 8787 * 2 : 29 необходимо выполнить по четыре действия.
Решение примера:
1) 815 * 204 - (8963 + 68077) : 36 = 166260 - 77040 : 36 = 166260 - 2140 = 164120;
1) 8963 + 68077 = 77040,
2) 815 * 204 = 166260,
3) 77040 : 36 = 2140,
4) 166260 - 2140 = 164120.
2) 9676 + 12237 - 8787 * 2 : 29 = 9676 + 12237 - 606 = 21913 - 606 = 21307.
1) 8787 * 2 = 17574,
2) 17574 : 29 = 606,
3) 9676 + 12237 = 21913,
4) 21913 - 606 = 21307.
ответ примера: 164120; 21307.
1) Отрезок АМ = 28*(4/7) = 16.
ВМ = √(13²+16²) = √(169+256) =√ 425 ≈ 20,61553.
СМ = √(15²+16²) = √(225+256) = √481 ≈ 21,93171.
Получаем площадь сечения ВМС по формуле Герона:
S = √(p(p-a)(p-b)(p-c)) = 140 кв.ед.
Здесь р - полусумма сторон, р = 28,27362.
2) Находим площадь основания по формуле Герона:
S(ABC) = √(21(21-13)(21-14)(21-15)) = √(21*8*7*6) = 84 кв.ед.
Проведём секущую плоскость через ребро АА1 перпендикулярно ВС.
Найдём высоту h основания:
h = 2S/a = 2*84/14 = 12.
Угол наклона α плоскости ВМС к основанию равен:
α = arc tg(16/12) = 53,1301°.
Площадь сечения ВМС равна:
S = S(ABC)/(cosα) = 84/0.6 = 140 кв.ед.