М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
svetaabc
svetaabc
09.05.2023 18:27 •  Математика

Маша коллекционирует фото известных спортсменов. каждый год число фото , которые она собрала, равно числу фото, которые она собрала за 2 предыдущие года. в 2012 году она собрала 60 фото, а в 2013 году она собрала 96 фото. сколько фотографий собрала маша в 2010 году?

👇
Ответ:
siolvermen2005
siolvermen2005
09.05.2023
Решение. В 2011 Маша должна была собрать 36 фотографий, чтобы в сумме с 60 фото, собранными в 2013 году получилось 96. А в 2010 было собрано 60-36=24 фотографии
4,6(83 оценок)
Открыть все ответы
Ответ:
Миша3111
Миша3111
09.05.2023

1. Пусть это число такое 10a + b, где b - последняя цифра числа, а - все остальные цифры, т.е. некое число.

10a + b - 2018 = a
9a = 2018 - b

Чтобы число делилось на 9, сумма его цифр должна делиться на 9. Значит, b=2. Тогда, 9a = 2018 - 2 = 2016; a = 224.

Итак, искомое число 2242.
Проверяем, 2242 - 224 = 2018

2. Составим 2 трёхзначных числа:
100a+10b+c и 100d+10e+f

Найдём разницу:
100a+10b+c-100d-10e-f = 100(a-b) + 10(b-e) + (c-f) = 693

Откуда,
a-d = 6
b-e = 9
c-f = 3

Если взять наибольшее трёхзначное число 999, то наименьшее возможное равно 999 - 693 = 306. Т.к. нуль не м.б. ни в каком числе, то ближайшее наименьшее возможное число равно 299, тогда наибольшее возможное равно 299 + 693 = 992

3. Пусть первая цифра равна а, а вторая равна b, тогда третья цифра равна (a+b), четвёртая - (a+2b), пятая - (2a+3b), шестая - (3a+5b). 

При этом, (3a + 5b) д.б. меньше 10, т.к. это цифра. При b>1 неравенство 3a+5b<10 не выполняется. При b=1 неравенство превращается такое 3a<5 и a=1. При b=0 неравенство будет такое 3а<10, и а=3. Т.к. число ищем максимальное, то берём а=3. Значит, максимальное искомое число равно: 303369

ответ: 303369

Подберём

4,7(49 оценок)
Ответ:

1. Пусть это число такое 10a + b, где b - последняя цифра числа, а - все остальные цифры, т.е. некое число.

10a + b - 2018 = a
9a = 2018 - b

Чтобы число делилось на 9, сумма его цифр должна делиться на 9. Значит, b=2. Тогда, 9a = 2018 - 2 = 2016; a = 224.

Итак, искомое число 2242.
Проверяем, 2242 - 224 = 2018

2. Составим 2 трёхзначных числа:
100a+10b+c и 100d+10e+f

Найдём разницу:
100a+10b+c-100d-10e-f = 100(a-b) + 10(b-e) + (c-f) = 693

Откуда,
a-d = 6
b-e = 9
c-f = 3

Если взять наибольшее трёхзначное число 999, то наименьшее возможное равно 999 - 693 = 306. Т.к. нуль не м.б. ни в каком числе, то ближайшее наименьшее возможное число равно 299, тогда наибольшее возможное равно 299 + 693 = 992

3. Пусть первая цифра равна а, а вторая равна b, тогда третья цифра равна (a+b), четвёртая - (a+2b), пятая - (2a+3b), шестая - (3a+5b). 

При этом, (3a + 5b) д.б. меньше 10, т.к. это цифра. При b>1 неравенство 3a+5b<10 не выполняется. При b=1 неравенство превращается такое 3a<5 и a=1. При b=0 неравенство будет такое 3а<10, и а=3. Т.к. число ищем максимальное, то берём а=3. Значит, максимальное искомое число равно: 303369

ответ: 303369

Подберём

4,8(33 оценок)
Это интересно:
Новые ответы от MOGZ: Математика

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ