Пусть самое маленькое равно 2k, второе будет равно 2k+2, третье 2k+4, четвертое 2k+6, пятое 2k+8, шестое 2k+10. По условию шестое в два раза больше первого: 2k+10=2·2k⇒2k+10=4k; 4k-2k=10; 2k=10.
Чтобы снова оказаться вместе в точке старта, каждому из велосипедистов нужно проехать какое-то целое количество кругов таким образом, чтобы у всех троих совпало затраченное на прохождение этих кругов время. Предположим, каждый из них проехал по 10 кругов. Чтобы понять, могли ли они за эти 10 кругов встретится в точке старта, составим таблицу, в которую внесём время для прохождения каждым из велосипедистов конечного количества кругов. (см. приложенный файл) Как видно из таблицы, время совпадёт тогда, когда первый проедет 7 кругов, второй - 5 кругов, третий за это же время успеет проехать 3 полных круга. Таким образом, вместе в точке старта они окажутся через 105 минут.
Чтобы снова оказаться вместе в точке старта, каждому из велосипедистов нужно проехать какое-то целое количество кругов таким образом, чтобы у всех троих совпало затраченное на прохождение этих кругов время. Предположим, каждый из них проехал по 10 кругов. Чтобы понять, могли ли они за эти 10 кругов встретится в точке старта, составим таблицу, в которую внесём время для прохождения каждым из велосипедистов конечного количества кругов. (см. приложенный файл) Как видно из таблицы, время совпадёт тогда, когда первый проедет 7 кругов, второй - 5 кругов, третий за это же время успеет проехать 3 полных круга. Таким образом, вместе в точке старта они окажутся через 105 минут.
Поэтому нужные числа - это 10; 12; 14; 16; 18; 20