Прежде всего, случайное совпадение (письмо Чмыхова и приезд Хлестакова).;городские сплетники приводят «неопровержимые» доказательства: «Он! и денег не платит, и не едет... Такой наблюдательный: все обсмотрел... он и в тарелки к нам заглянул...» Это для городничего уже серьезный довод (очевидно, так вели себя те ревизоры, с которыми приходилось иметь дело городничему). ,поначалу молодость Хлестакова вызывает у городничего надежду: «Молодого скорее пронюхаешь. Беда, если старый черт, а молодой весь наверху». Затем, после неумеренной похвальбы Хлестакова, чутье не позволяет городничему до конца поверить всем этим россказням: «Ну что, если хоть одна половина из того, что он говорил, правда? (Задумывается.) Да как же и не быть правде? Подгулявши, человек все несет наружу: что на сердце, то и на языке. Конечно, прилгнул немного; да ведь не прилгнувши не говорится никакая речь». Но страх не дает ему сделать верный вывод из своих наблюдений. Тут в полной мере оправдывается русская пословица: «У страха глаза велики».
Главная же причина того, что городничий поверил в значительность Хлестакова, — это его собственная нечистая совесть. Ведь истинный, а не мнимый ревизор обнаружил бы в городе столько злоупотреблений и прямых преступлений власти, что возникающий в сознании городничего призрак Сибири как наказания за его грехи, кажется ему вполне заслуженным. «В эти две недели высечена унтер-офицерская жена! Арестантам не выдавали провизии! На улицах кабак, нечистота!» — сокрушается он, когда узнаёт, что Хлестаков уже так долго находится в городе. А еще, из жалобы слесарши Февроньи Пошлепкиной, мы узнаём, что городничий, нарушив закон, ее мужу «приказал забрить лоб в солдаты», получив взятку от тех, кто должен был идти в рекруты по очередности.
1) Найти область определения функции - все числа, кроме х = -2. 2) Исследовать функцию на непрерывность - в точке х = -2 разрыв графика; 3) Определить, является ли данная функция четной, нечетной - подставим значение х = -х: у(х)=(х^2-5)/(x+2). у(-х)=(х^2-5)/(-x+2). Функция не чётная и не нечётная. 4) Найти интервал возрастания и убывания функции и точки экстремума. Производная равна y ' = (x²+4x+5)/(x+2)². Приравняем 0: достаточно приравнять 0 числитель, знаменатель не может быть равен 0. Выражение: x^2+4*x+5=0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=4^2-4*1*5=16-4*5=16-20=-4; Дискриминант меньше 0, уравнение не имеет корней. Значит, у функции нет экстремумов.5) Найти интервалы выпуклости и вогнутости графика функции и точки перегиба. Находим вторую производную. y '' = 2/(x+2)³. Она не может быть равной 0. Перегибов нет. Вторая производная при х < -2 отрицательна. График вогнут. При х > -2 график выпуклый. 6) Найти асимптоты графика функции. Горизонтальных асимптот нет. Вертикальная х = -2. Наклонные: для к находим предел f(x)/x к = 1. для в находим предел f(x)-x в = -2. Получаем уравнение у = х - 2.
320:50=6,4
можно и 0 убрать,тогда 32:5=6,4