Пошаговое объяснение:1) f(x)= 2x²-3x+1 , [-1;1] ⇒ f'(x)= 4x-3, найдём критические точки: 4х-3=0, ⇒ х = 3/4=0,75 ∈[-1;1]. Найдём значения функции в критической точке и на концах данного промежутка: f(3/4)= 2·(3/4)²- 3·3/4 +1 =9/8 -9/4 + 1 = -1/8 ; f(1) = 0; f(-1)=6 ⇒ max f(x)=f(-1)=6; minf(x)=f(3/4)=-1/8
2)f(x)=3x²-4 на [2;4] ⇒ f'(x)=6x 6x=0, x=0-крит. точка, но x=0∉ [2;4] ⇒ Найдём значения функции на концах данного промежутка: f(2)= 3·2²-4= 12-4=8 f(4)=3·4² - 4= 48-4=44 ⇒ max f(x)=f(-4)=44; minf(x)=f(2)=8 3)f(x)=x²-1 на [0;3]⇒ f'(x)=2x , 2x=0 x=0 -критическая точка х=0 ∈ [0;3]. Найдём значения функции в критической точке и на концах данного промежутка: f(0) =0²-1=-1; f(3)=3²-1=8 ⇒max f(x)=f(3)=8; minf(x)=f(0)= -1
у нас так
Пошаговое объяснение:
ответ Леонида верен, но нужно более серьезное обоснование.
Псть одно дерево дает n золотых монет. Возможны две модели поведения.
1. Буратино-Жадина. Хочет как можно быстрее получить как можно большую прибыль, поэтому каждый раз закапывает все золотые монетки. Во вторник он получит 5*n монет, в среду 5*n^2, и т. д. Если при этом выполнены условия задачи, то
5*n^2≤1992≤5*n^4
n^2≤398,4≤n^4
Решим в целых числах.
5≤n≤19
Таким образом он никогда не наберет 1992 монеты, потому, что 1992 не крано 5.
Это было очевидно с самого начала. Оценка n понадобится нам чуть позже.
2. Буратино-Маньяк. Ему не важно сколько он потратит дней. Он может закапывать любое число монет, если они у него есть, лишь бы когда-нибудь набрать ровно 1992. Пусть дерево дает урожай n монет. Сколько бы монет он не посадил, прибыль будет кратна n-1 (одну монету он тратит на выращивание дерева) . Чтобы достичь цели ему необходимо, чтобы 1992-5=1987 делилось на n-1
Но число (проверил по таблице) , значит, n=2 или n=1988
В первом случае он явно не укладывается в 5 дней (см. вариант 1).
Во втором случае он достигне резултата в первый же день.