На данном уроке мы рассмотрим важное следствие теорем сложения и умножения вероятностей и научимся решать типовые задачи по теме. Читателям, которые ознакомились со статьёй о зависимых событиях, будет проще, поскольку в ней мы уже по факту начали использовать формулу полной вероятности. Если Вы зашли с поисковика и/или неважно разбирайтесь в теории вероятностей (ссылка на 1-й урок курса), то сначала рекомендую посетить указанные страницы.
Собственно, продолжаем. Рассмотрим зависимое событие , которое может произойти лишь в результате осуществления одной из несовместных гипотез , которые образуют полную группу. Пусть известны их вероятности и соответствующие условные вероятности . Тогда вероятность наступления события равна:
Эта формула получила название формулы полной вероятности. В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий, (произошло событие и после него наступило событие или произошло событие и после него наступило событие илипроизошло событие и после него наступило событие или …. или произошло событие и после него наступило событие ). Поскольку гипотезы несовместны, а событие – зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг):
2) 14+6= 20 (км/ч)
3) 50:20= 2,5 (км/ч ) - она км.