Боковая сторона равносторонняя трапеции 10√2 см. Она образует с основанием куд 45 градусов. Найти площадь трапеции, если в нее можно вписать окружность.
Пошаговое объяснение:
Прочитаем задачи:
Боковая сторона равнобедренной трапеции равна десять корней из двух, и образует с основанием угол 45 градусов.Найти площадь трапеции если в нее можно вписать окружность.
Опустим ВК⊥АD, ∠А = ∠АВК = 45 ° ⇒ВК = АК
АВ² = 2ВК²⇒ВК = √АВ² / 2 = 10.
В четырехугольник можно вписать окружность тогда, когда суммы противоположных сторон четырехугольника равни.⇒
АВ + CD = BC + AD = 2 * 10√2 = 20√2
S = BK * (BC + AD) / 2 = 10 * (20√2) / 2 = 100√2.
Эта площадь состоит из двух участков: один - от начала координат до точки пересечения парабол и второй далее до х = 3 (где вторая парабола пересекается с осью Ох.
Находим точку пересечения парабол.
6x² = (x - 3)(x - 4).
6x² = x² - 3x - 4х + 12.
5х² + 7х - 12 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=7^2-4*5*(-12)=49-4*5*(-12)=49-20*(-12)=49-(-20*12)=49-(-240)=49+240=289;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√289-7)/(2*5)=(17-7)/(2*5)=10/(2*5)=10/10=1;x₂=(-√289-7)/(2*5)=(-17-7)/(2*5)=-24/(2*5)=-24/10=-2,4. Это значение отбрасываем, так как оно не отвечает условию задачи.
Искомая площадь S равна: