у одноклассников пети может быть 0, 1, 2, 28 друзей – всего 29 вариантов. но если кто-то дружит со всеми, то у всех не меньше одного друга. поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. в обоих случаях остается 28 вариантов: 1, 2, 28 или 0, 1, 27.
обозначим того, у кого больше всего друзей через a, а того, у кого их меньше всего – через b. в первом случае a дружит со всеми, а b – только с одним человеком, то есть только с a. во втором случае b не дружит ни с кем, а a дружит со всеми, кроме одного, то есть со всеми, кроме
b.
итак, в каждом из случаев a дружит с петей, а b – нет. переведём a и b в другой класс. как мы уже видели, a дружит со всеми из оставшихся, а b – ни с кем из оставшихся. поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). значит, у оставшихся
петиных одноклассников снова будет разное число друзей среди одноклассников.
теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д.
повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой
из которых ровно один петин друг. итак, друзей у пети 14.
3х +у=6
Сложим части уравнений: (6х+3х; -у+у; 3+6 - складываем соответственно части 1-ого и 2-ого уравнений)
9х-у=9
-у=9-9х
у=9х-9
Подставим в первое уравнение:
6х-у=3
6х-(9х-9)=3
6х-9х+9=3
-3х=3-9
-3х=-6
х=2
Подставим во второе уравнение:
3х+у=6
3*2+у=6
6+у=6
у=6-6
у=1
ответ: х=2, у=1.