. Условие, что выражение равно единице, можно записать так:
(100 + n)k(100 - n)l = 100k + l. Так как правая часть четна, то и левая часть должна быть четна, значит, n четно. Аналогично, левая часть делится на 5, значит, n делится на 5. Значит, n делится на 10. Можно перебрать все 9 возможных вариантов: n = 10, 20, ..., 90. Например, если n = 10, то левая часть делится на 11, что невозможно.Можно обойтись без перебора: пусть n не делится на 25. Тогда числа 100 - n и 100 + n тоже не делятся на 25. Значит, пятерка входит в разложение левой части на простые множители ровно k + l раз. Но она входит в разложение правой части 2(k + l ) раз -- противоречие. Итак, n делится на 25. Аналогично доказывается, что n делится на 4. Но тогда n делится на 100, что невозможно, ибо 0 < n < 100.
ответ:
светило науки
пусть а - длина ребра кубика.
а^3 - объем кубика.
35 • 45 • 55 = 86625 куб.см - объем коробки.
поскольку все длины ребра коробки коробки кратны 1 или 5, то коробку можно полностью заполнить либо кубиками по размером 1 куб.см каждый, либо кубиками с размерами 5•5•5 = 125 куб.см.
крупнее кубики не могут быть, так как габариты коробки имеют самое наибольшее общее кратное 5.
1) 86625 : 1 = 86625 кубиков по 1 куб.см.
2) 86625 : 125 = 693 кубика с ребром 5 см.
693 - наименьшее количество кубиков, которыми можно полностью заполнить коробку.
ответ: 693.
(по крайней мере у меня так выходит в любом случае)