Пошаговое объяснение: №1 ΔКОL-прямоугольный, т.к. радиус ОК⊥КL (касательная перпендикулярна радиусу, проведённому в точку касания), ⇒КL= OK·tg60° = 6·√3 №2. Δ ОMN -прямоугольный, т.к. радиус ОN⊥MN (касательная перпендикулярна радиусу, проведённому в точку касания), по условию ON=1/2 ·OM (9=1/2 ·18) ⇒∠NMO=30° (по св-ву катета, лежащего против угла в 30°), ⇒∠NMK =30°·2=60° (по св-ву касательных, проведённых из одной точки к окружности). №3. ΔОАВ -равносторонний, т.к. ОА=ОВ=R(радиусы окружности), а ОА =АВ по условию, ⇒ОА=ОВ=АВ, ⇒все углы треугольника равны по 60°, ⇒∠ОАВ=60°. ∠ОАС=90° (касательная перпендикулярна радиусу)⇒∠ВАС=90°-60°°=30°. №4 ΔОАВ -равносторонний, т.к. ОА=ОВ=R(радиусы окружности), а ОА =АВ по условию, ⇒ОА=ОВ=АВ, ⇒все углы треугольника равны по 60°, ⇒∠ОАВ=60°. ∠ОАС=90° (касательная перпендикулярна радиусу)⇒∠ВАМ=90°-60°°=30°. Но ΔАМВ равнобедренный (по св-ву касательных, проведённых из одной точки М)⇒∠АВМ=∠∠ВАМ=30°, тогда ∠АМВ= 180° -(30°+30°)= 120°.
чтобы найти площадь диагонального сечения надо сначала найти диагональ, её можно найти по теореме пифагора. диагональ будет равна 5√2, следовательно площадь диагонального сечения будет равна 25√2 см2
а объем куба будет равен 5*5*5= 125 см3
Пошаговое объяснение:
Для геометрических тел с правильным многоугольником в основании можно провести диагональ последнего. Если эту линию спроецировать к вершине (для пирамиды) либо вершинам, например, для куба или параллелограмма, получим диагональное сечение объёмного тела. Если площадь куба вычисляется путём возведения длины стороны в квадрат, то с размером занимаемой сечением поверхности дело сложнее.
Секущая площадь куба имеет форму прямоугольника, где одна пара сторон представлена рёбрами кубика, вторая – диагоналями граней. Для вычисления её площади нужна только длина ребра правильного прямоугольника, ведь одна из них выполняет роль высоты. Длина диагонали для треугольников, где высота – это гипотенуза, а рёбра – катеты, определяется по формуле a*√2. Занимаемая диагональным сечением куба площадь равняется:
S = a * a * √2 = a²*√2.
Диагональное сечение куба - это прямоугольник, у него меньшая сторона совпадает с ребром, а большая - с диагональю грани (основания). Таким образом, чтобы найти площадь диагонального сечения куба, нужно воспользоваться формулой площади прямоугольника: S(пр) = a * b.
1день-756р.
756*14=10584
10584-1204=11380