ответ:
пошаговое объяснение:
дано:
авсд - трапеция
ав=12см
сд=13см
угол авс=уголсад(биссектриса делит пополам)
найти:
sавсд
решение :
проведем вн_i_ад всдн- прямоугольник сд=вн=12 см вс=дн.
из треугольника авн ан=корень 169-144=5 см.
треугольник авс. угол сад=вса - как внутренний накрест лежащий при вс//ад. углы при основании равны равны и боковые стороны ав=вс=13.
ад=ан+нд=13+5=18 см.
s=½h(a+b)
sabcd=12/2(13+18)=6*31=234 см ^2
или
пусть трапеции abcd, где прямой угол - а.. проведём высоту из т. с. назовём её со. бис-са выходит из угла d. тогда
1)угол dbc=bda, тк являбтся накрест лежащимт при прямых bc и ad и секущей bd. тогда получается, что треуг bd равнобедренный.
2) в ранобедренном трег боковые стороны равны. bc=cd=13см.
3) рассмотрим прямоуг. abco. в прямоуг противолежсщие стороны равны. ab=co=12, bc=ao=13.
4) рассмотрим треуг cod. по теореме пифагора оd^2= 169-144=25. значит od=5см.
5) ad=13+5=18см
s=½h(a+b)
6)sabcd=12/2(13+18)=6*31=234 см ^2
675
Сумма любых трёх подряд стоящих чисел не превосходит 1 - значит, среди любых трех подряд стоящих чисел не более одной 1, остальные нули
Далее, слева и справа от любой 1, стоящей на месте с порядковым номером в ряду больше либо равном 3 и меньше либо равном 2022 могут стоять только два 0.
Если единица стоит на 2 либо на 2021 то на первом и на 2023 месте также должны быть нули
Таким образом, для определения наибольшего значения суммы ряда надо построить его таким чтобы поместилось как можно больше единиц.
Есть только три варианта построения ряда:
100100...
010010
001001...
Делим 2023 на 3 получаем целое число 674 и остаток 1, в нашем ряду это будет число 1, то есть 674+1=675