М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
keshatroy86e7
keshatroy86e7
21.04.2022 20:29 •  Математика

Убабушки было 72 редиски.она связало их 9 одинаковых пучков

👇
Ответ:
Было 8 пучков
72:9=8
4,6(47 оценок)
Ответ:
kfisatidi
kfisatidi
21.04.2022
72:9=8
ответ: 8 пучков
4,5(15 оценок)
Открыть все ответы
Ответ:
trolololo228353
trolololo228353
21.04.2022

Наибольший общий делитель (НОД) двух данных чисел 21 и 35 — это наибольшее число, на которое оба числа 21 и 35 делятся без остатка.

НОД (21; 35) = 7.

Как найти наибольший общий делитель для 21 и 35

Разложим на простые множители 21

21 = 3 • 7

Разложим на простые множители 35

35 = 5 • 7

Выберем одинаковые простые множители в обоих числах.

7

Находим произведение одинаковых простых множителей и записываем ответ

НОД (21; 35) = 7 = 7

НОК (Наименьшее общее кратное) 21 и 35

Наименьшим общим кратным (НОК) 21 и 35 называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел (21 и 35).

НОК (21, 35) = 105

Как найти наименьшее общее кратное для 21 и 35

Разложим на простые множители 21

21 = 3 • 7

Разложим на простые множители 35

35 = 5 • 7

Выберем в разложении меньшего числа (21) множители, которые не вошли в разложение

3

Добавим эти множители в разложение бóльшего числа

5 , 7 , 3

Полученное произведение запишем в ответ.

НОК (21, 35) = 5 • 7 • 3 = 105

Теперь все это складываем:

105 + 7 = 112

ответ: 112

4,7(3 оценок)
Ответ:
Bibika2005
Bibika2005
21.04.2022

наверно ты имела ввиду что надо составить плоскость в которой лежат все три эти точки, привести его к общему виду и к виду в отрезках.

Чтобы найти уравнение плоскости, необходимо составить определитель вида

\left[\begin{array}{ccc}x_{2}-x_{1}&y_{2}-y_{1}&z_{2}-z_{1}\\x_{3}-x_{1}&y_{3}-y_{1}&z_{3}-z_{1}\\x-x_{1}&y-y_{1}&z-z_{1}\end{array}\right] =0:

где соответствующие координаты принадлежать соответствующим точкам. Получаем:

\left[\begin{array}{ccc}-1-1&0-2&4+1\\-2-1&-1-2&1+1\\x-1&y-2&z+1\end{array}\right] =0 \\ \\ \\ \left[\begin{array}{ccc}-2&-2&5\\-3&-3&2\\x-1&y-2&z+1\end{array}\right] =0 \\ \\ \\

 

 Раскрываем определитель

-2\left[\begin{array}{cc}-3&2\\y-2&z+1\end{array}\right] +2\left[\begin{array}{cc}-3&2\\x-1&z+1\end{array}\right] + 5\left[\begin{array}{cc}-3&-3\\x-1&y-2\end{array}\right] = 0

 

 

-2(-3)(z+1)+2(y-2)2+2(-3)(z+1)-2(x-1)2+ \\ + 5(-3)(y-2) - 5(-3)(x-1) = 0

 

6(z+1)+4(y-2)-6(z+1)-4(x-1)-15(y-2)+ \\ +15(x-1)=0 \\ 6z+6+4y-8-6z-6-4x+4-15y+30+15x-15 = 0\\ 11x-11y+11=0 \\ x-y+0 \cdot z + 1 = 0 ]

 

x-y+1 = 0 Искомое уравнение плоскости, из-за коэфициента при координате z равного нулю, координата z не учитывается в уравнении. Плоскость параллельна оси Оz.

Приведем уравнение плоскости из общего вида к виду в отрезках. Уравнение в отрезках имеет вид

 

\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \\ a = \frac{-D}{A} \\ b= \frac{-D}{|B} \\ c = \frac{-D}{C} \\ \frac{x}{-1} + \frac{y}{1} = 1 \\

4,5(66 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ