Рациональное число - это число кторое можно представить в виде обыкновенной дроби 2/3 2 - числитель, 3 - знаменатель несократимая дробь - её нельзя сократить, уменьшить в несколько раз, пример 2/3 14/17 8/13 5/30 = 1/6 4/12 = 1/3 чтобы сравнить дроби с общим зн. нужно смотреть на числитель, у какой дроби он больше, та и больше. 7/8 и 6/8 7 больше 6 а значит 7/8 больше 6/8 у разных знаменателей нужно сначала привести к общему, а затем как и дроби с общем знаменателем 1/4 и 1/3 общий зн. = 12 1/4 = 3/12 1/3 = 4/12 3/12 vtymit 4/12 значит 1/4 меньше 1/3 правильная дробь та у которое числитель меньше знаменаткели правильная дробь всегда меньше 1, неправильная - больше 1, правильная меньше чем неправильная сложение дробей с одинаковым очень просто - складываешь числительи, знаменатель тот же если разный знаменатель - просто приведи к общему, а потом делай то что выше вычитание абсол.тно аналогично сложению умножение и деление проще чем сложение и вычитание если смешанная то переводим в неправильную, если правильная оставляем дальше умножаем. если крест накрест сокращается, то сокращаем пример 3/4 и 4/5 4 и 4 сокращаются умножение на натуральное точно такое же, просто переводим в неправильную, т.е. 4 это 4/1 1605 это 1605/1 деление похоже на умножение, только вторую дробь вы переворачиваем (т.е. 4/5 разделить на 1 1/5 = 4/5 разделить на 6/5 = 4/5 умножить на 5/6)
Б) Когда попадаются дроби с разными знаменателями, то нужно привести к общему знаменателю. например: 3/5 + 2/10= у дробей разные знаменатели. чтобы мы могли сложить дроби, нам нужно, чтобы в знаменателях стояли одинаковые числа. мы знаем, что разделив десять на пять, мы получим два, значит: 3/5 + 2/10 = 6/10 + 2/10 (мы умножаем числитель на число. на которое мы умножили, чтобы привести к общему знаменателю) Итог: 3/5 + 2/10 = 6/10 + 2/10 = 8/10
7/4-0,7+2,5х=1,7
2,5х=1,7-1,75+0,7
2,5х=0,65
х=0,65 : 2,5
х=0,26.