ДАНО
Y= x³ - 3x
ИССЛЕДОВАНИЕ
1. Область допустимых значений - Х∈(-∞;+∞) или X∈R
Функция непрерывная - разрывов нет.
2. Точки пересечения с осью Х
Y = x*(x² - 3)
x1 = 0, x2 = - √3, x3 = √3.
3. точка пересечения с осью У.
Y(0) = 0.
4. Y(-x) = - x³ + 3x = -Y(x) - Функция нечетная.
5. Первая производная.
Y'(x) = 3*x² - 3 = 3*(x-1)(x+1)
6. Локальные экстремумы
Ymax(-1) = 2 - максимум
Ymin(1) = -2 - минимум
7. Монотонность.
Возрастает - Х∈(-∞;-1]∪[1;+∞)
Убывает - X∈[-1;1]
8. Вторая производная
Y"(x) = 6*x
9. Точка перегиба - Y"(x) = 0 при Х=0.
10. Выпуклая - X∈(-∞;0]
Вогнутая - X∈[0;+∞)
11. График прилагается
Поставь лучший ответ если не сложно
Задание № 2:
При каком значении параметра a пара уравнений равносильна?
1) ax−a+3−x=0;
2) ax−a−3−x=0.
равносильна - значит множества корней уравнений совпадают
первое:
ax-a+3-x=0
ax-x=a-3
(a-1)x=a-3
второе:
ax−a−3−x=0
ax−x=a+3
(a-1)x=a+3
если а=1, то оба уравнения не имеют корней: получим уравнение 0х=b, где b не ноль
если а<>1, то первое уравнение имеет корень (a-3)/(а-1), а второе (a+3)/(а-1). эти корни ни при каких а не совпадут
ответ: 1